コード例 #1
0
ファイル: flask_app.py プロジェクト: reviveai/np_detect
def run_detect(filename):
    base_file_name = os.path.basename(filename)
    saved_file_name = os.path.join(MASKED_DIR, base_file_name)
    logging.info('Loading image: %s', base_file_name)

    # Convert png with alpha channel with shape[2] == 4 into shape[2] ==3 RGB images
    image = skimage.io.imread(filename)
    if len(image.shape) > 2 and image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
    logging.info('Image info: %s', image)

    # Run detection
    results = model.detect([image], verbose=1)
    r = results[0]
    logging.info('Runing model.detect([image], verbose=1).')

    # Just apply mask then save images
    print_img = visualize.apply_mask_instances(image, r['rois'], r['masks'],
                                               r['class_ids'], class_names,
                                               r['scores'], None, None, None,
                                               None, None, [(1.0, 1.0, 1.0)])
    skimage.io.imsave(saved_file_name, print_img)
    logging.info('Finished apply_mask_instances.')

    return True
コード例 #2
0
ファイル: server.py プロジェクト: reviveai/np_detect
def run_detect(filename):

    base_file_name = os.path.basename(filename)
    base_dir_name = os.path.dirname(filename)
    logging.info('Dir name: %s',base_dir_name)
    logging.info('File name: %s',base_file_name)
    split_file_name, split_file_ext = os.path.splitext(base_file_name)
    saved_dir_name = 'masked'
    saved_file_name = str.join('\\', (base_dir_name, saved_dir_name, base_file_name))
    logging.info('Saved as: %s',saved_file_name)

    # Convert png with alpha channel with shape[2] == 4 into shape[2] ==3 RGB images
    image = skimage.io.imread(filename)
    if len(image.shape) > 2 and image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)

    # Run detection
    results = model.detect([image], verbose=1)
    r= results[0]

    # Just apply mask then save images
    print_img = visualize.apply_mask_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'])
    skimage.io.imsave(saved_file_name,print_img)

    return True
コード例 #3
0
            # convert png with alpha channel with shape[2] == 4 into shape[2] ==3 RGB images
            image = skimage.io.imread(filename)
            if len(image.shape) > 2 and image.shape[2] == 4:
                image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)

            # processing time log
            t0 = time.perf_counter()

            # Run detection
            results = model.detect([image], verbose=1)
            r = results[0]

            # without displaying images for batch program
            ###print_img = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores'])
            ###skimage.io.imsave(saved_file_name,print_img)

            # just apply mask then save images
            print_img = visualize.apply_mask_instances(image, r['rois'],
                                                       r['masks'],
                                                       r['class_ids'],
                                                       class_names,
                                                       r['scores'])
            skimage.io.imsave(saved_file_name, print_img)

            # processing time log
            t1 = time.perf_counter()
            print('LOGGING:::::: Completed in %f sec' % (t1 - t0))
            print('LOGGING:::::: End\n')
            # end
コード例 #4
0
def apply_mask_to_image(config_name, weights_name):

    # Class names
    # Index of the class in the list is its ID. For example, to get ID of
    # the teddy bear class, use: class_names.index('teddy bear')
    class_names = ['BG', 'numberplate']

    # Create model object in inference mode.
    model = modellib.MaskRCNN(mode="inference",
                              model_dir=MODEL_DIR,
                              config=config_name)

    # Load pre-trained weights
    NUMBERPLATE_WEIGHTS_FILE = os.path.join(NUMBERPLATE_WEIGHTS_PATH,
                                            weights_name)
    model.load_weights(NUMBERPLATE_WEIGHTS_FILE, by_name=True)
    logging.info('%s weights file loaded.' % args.weights)

    # Validation images extension
    image_type_ok_list = ['jpeg', 'png', 'gif', 'bmp']

    # Loop every file in the folder
    file_count = 0
    for file_names in os.scandir(IMAGE_DIR):
        if file_names.is_file():
            image_type = imghdr.what(file_names)
            if image_type in image_type_ok_list:
                # Start
                file_count += 1
                logging.info('Counting %d start' % file_count)

                # Date time log
                img_timestamp = time.localtime()
                date_string = str.join('/',
                                       (str(img_timestamp.tm_year),
                                        str(img_timestamp.tm_mon).zfill(2),
                                        str(img_timestamp.tm_mday).zfill(2)))
                time_string = str.join(':',
                                       (str(img_timestamp.tm_hour).zfill(2),
                                        str(img_timestamp.tm_min).zfill(2),
                                        str(img_timestamp.tm_sec).zfill(2)))
                logging.info('Date Time: %s %s', date_string, time_string)

                # Filename and filepath log
                filename = os.path.join(IMAGE_DIR, file_names)
                logging.info('Loading image: %s', filename)

                # Convert png with alpha channel with shape[2] == 4 into shape[2] ==3 RGB images
                image = skimage.io.imread(filename)
                if len(image.shape) > 2 and image.shape[2] == 4:
                    image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)

                # Processing start time
                t0 = time.perf_counter()

                # Run detection
                results = model.detect([image], verbose=1)
                r = results[0]

                # Just apply mask then save images
                base_file_name = os.path.basename(filename)
                base_dir_name = os.path.dirname(filename)
                saved_dir_name = 'masked'
                saved_file_name = str.join(
                    '\\', (base_dir_name, saved_dir_name, base_file_name))
                print_img = visualize.apply_mask_instances(
                    image, r['rois'], r['masks'], r['class_ids'], class_names,
                    r['scores'])
                skimage.io.imsave(saved_file_name, print_img)
                logging.info('Saved masked image as: %s', saved_file_name)

                # Processing ending time
                t1 = time.perf_counter()
                logging.info('Completed 1 image in %f sec', (t1 - t0))
                logging.info('End')
    return True