def add_coefficients(self, data, **kwargs): """ Add an individual CoefficientResult. Note that it is not possible to add the same data twice, instead it will be redrawn with the new arguments/style options provided. Parameters ---------- data : CoefficientResult Added to the list of plotted elements. kwargs Keyword arguments passed to :obj:`matplotlib.axes.Axes.plot`. Use to customise the plots. If a `label` is set via `kwargs`, it will be used to overwrite the description of `data` in the meta file. If an alpha value is or linestyle is set, the shaded error region will be omitted. Example ------- .. code-block:: python rk = mre.coefficients(mre.simulate_branching()) mout = mre.OutputHandler() mout.add_coefficients(rk, color='C1', label='test') .. """ if not isinstance(data, CoefficientResult): log.exception("'data' needs to be of type CoefficientResult") raise ValueError if not (self.type is None or self.type == 'correlation'): log.exception( "It is not possible to 'add_coefficients()' to " + "an OutputHandler containing a time series\n" + "\tHave you previously called 'add_ts()' on this handler?") raise ValueError self.type = 'correlation' # description for columns of meta data desc = str(data.desc) # plot legend label if 'label' in kwargs: label = kwargs.get('label') if label == '': label = None if label is None: labelerr = None else: # user wants custom label not intended to hide the legend label = str(label) labelerr = str(label) + ' Errors' # apply to meta data, too desc = str(label) else: # user has not set anything, copy from desc if set label = 'Data' labelerr = 'Errors' if desc != '': label = desc labelerr = desc + ' Errors' if desc != '': desc += ' ' # dont put errors in the legend. this should become a user choice labelerr = '' # no previous coefficients present if len(self.rks) == 0: self.dt = data.dt self.dtunit = data.dtunit self.xlabel = \ 'steps[{}{}]'.format(ut._printeger(data.dt, 5), data.dtunit) self.ax.set_xlabel('k [{}{}]'.format(ut._printeger(data.dt, 5), data.dtunit)) self.ax.set_ylabel('$r_{k}$') self.ax.set_title('Correlation') # we dont support adding duplicates oldcurves = [] if data in self.rks: indrk = self.rks.index(data) log.warning( 'Coefficients ({}/{}) '.format(self.rklabels[indrk][0], label) + 'have already been added\n\tOverwriting with new style') del self.rks[indrk] del self.rklabels[indrk] oldcurves = self.rkcurves[indrk] del self.rkcurves[indrk] del self.rkkwargs[indrk] # add to meta data else: inds = self.set_xdata(data.steps, dt=data.dt, dtunit=data.dtunit) ydata = np.full(self.xdata.size, np.nan) ydata[inds] = data.coefficients self.ydata.append(ydata) self.ylabels.append(desc + 'coefficients') if data.stderrs is not None: ydata = np.full(self.xdata.size, np.nan) ydata[inds] = data.stderrs self.ydata.append(ydata) self.ylabels.append(desc + 'stderrs') self.rks.append(data) self.rklabels.append([label, labelerr]) self.rkcurves.append(oldcurves) self.rkkwargs.append(kwargs) # refresh coefficients for r in self.rks: self._render_coefficients(r) # refresh fits for f in self.fits: self._render_fit(f)
def simulate_branching(m, a=None, h=None, length=10000, numtrials=1, subp=1, seed='random'): """ Simulates a branching process with Poisson input. Returns data in the trial structure. Per default, the function discards the first few time steps to produce stationary activity. If a `drive` is passed as ``h=0``, the recording starts instantly (and produces exponentially decaying activity). Parameters ---------- m : float Branching parameter. a : float Stationarity activity of the process. Only considered if no drive `h` is specified. h : ~numpy.array, optional Specify a custom drive (possibly changing) for every time step. If `h` is given, its length takes priority over the `length` parameter. If the first or only value of `h` is zero, the recording starts instantly with set activity `a` and the resulting timeseries will not be stationary in the beginning. length : int, optional Number of steps for the process, thereby sets the total length of the generated time series. Overwritten if drive `h` is set as an array. numtrials : int, optional Generate 'numtrials' trials. Default is 1. seed : int, optional Initialise the random number generator with a seed. Per default, ``seed='random'`` and the generator is seeded randomly (hence each call to `simulate_branching()` returns different results). ``seed=None`` skips (re)seeding. subp : float, optional Subsample the activity with the probability `subp` (calls `simulate_subsampling()` before returning). Returns ------- : :class:`~numpy.ndarray` with `numtrials` time series, each containging `length` entries of activity. Per default, one trial is created with 10000 measurements. """ length = int(length) numtrials = int(numtrials) if h is None: if a is None: log.exception("Missing argument, either provide " + "the activity 'a' or the drive 'h'") raise TypeError else: h = np.full((length), a * (1 - m)) else: if a is None: a = 0 h = np.asarray(h) if h.size == 1: h = np.full((length), h) elif len(h.shape) != 1: log.exception("Argument drive 'h' needs to be a float or 1d array") raise ValueError else: length = h.size log.debug('simulate_branching() seeding to {}'.format(seed)) if seed is None: pass elif seed == 'random': np.random.seed(None) else: np.random.seed(seed) if h[0] == 0 and a != 0: log.debug('Skipping thermalization since initial h=0') if h[0] == 0 and a == 0: log.warning('activity a=0 and initial h=0') log.info('Generating branching process with m={}'.format(ut._printeger(m))) log.debug( '{:d} trials with {:d} time steps each\n'.format(numtrials, length) + 'branchign ratio m={}\n'.format(m) + '(initial) activity a={}\n'.format(a) + '(initial) drive rate h={}'.format(h[0])) A_t = np.zeros(shape=(numtrials, length), dtype=int) a = np.ones_like(A_t[:, 0]) * a # if drive is zero, user would expect exp-decay of set activity # for m>1 we want exp-increase, else # avoid nonstationarity by discarding some steps if (h[0] != 0 and h[0] and m < 1): therm = np.fmax(100, int(length * 0.05)) log.info('Setting up stationarity, {:d} steps'.format(therm)) for idx in range(0, therm): a = np.random.poisson(lam=m * a + h[0]) A_t[:, 0] = np.random.poisson(lam=m * a + h[0]) for idx in range(1, length): try: # if m >= 1 activity may explode until this throws an error A_t[:, idx] = np.random.poisson(lam=m * A_t[:, idx - 1] + h[idx]) except ValueError as e: log.debug('Exception passed for bp generation', exc_info=True) # A_t.resize((numtrials, idx)) A_t = A_t[:, 0:idx] log.info( 'Activity is exceeding numeric limits, canceling ' + 'and resizing output from length={} to {}'.format(length, idx)) break if subp != 1 and subp is not None: try: # do not change rng seed when calling this as nested, otherwise # bp with subs. is not reproducible even with given seed return simulate_subsampling(A_t, prob=subp, seed=None) except ValueError: log.debug('Exception passed', exc_info=True) return A_t
def set_xdata(self, data=None, dt=1, dtunit=None): """ Adjust xdata of the plot, matching the input value. Returns an array of indices matching the incoming indices to already present ones. Automatically called when adding content. If you want to customize the plot range, add all the content and use matplotlibs :obj:`~matplotlib.axes.Axes.set_xlim` function once at the end. (`set_xdata()` also manages meta data and can only *increase* the plot range) Parameters ---------- data : ~numpy.array x-values to plot the fits for. `data` does not need to be spaced equally but is assumed to be sorted. dt : float check if existing data can be mapped to the new, provided `dt` or the other way around. `set_xdata()` pads undefined areas with `nan`. dtunit : str check if the new `dtunit` matches the one set previously. Any padding to match `dt` is only done if `dtunits` are the same, otherwise the plot falls back to using generic integer steps. Returns ------- : :class:`~numpy.array` containing the indices where the `data` given to this function coincides with (possibly) already existing data that was added/plotted before. Example ------- .. code-block:: python out = mre.OutputHandler() # 100 intervals of 2ms out.set_xdata(np.arange(0,100), dt=2, dtunit='ms') # increase resolution to 1ms for the first 50ms # this changes the existing structure in the meta data. also # the axis of `out` is not equally spaced anymore fiftyms = np.arange(0,50) out.set_xdata(fiftyms, dt=1, dtunit='ms') # data with larger intervals is less dense, the returned list # tells you which index in `out` belongs to every index # in `xdat` xdat = np.arange(0,50) ydat = np.random_sample(50) inds = out.set_xdata(xdat, dt=4, dtunit='ms') # to pad `ydat` to match the axis of `out`: temp = np.full(out.xdata.size, np.nan) temp[inds] = ydat .. """ log.debug('OutputHandler.set_xdata()') # make sure data is not altered xdata = np.copy(data.astype('float64')) # xdata = data # nothing set so far, no arugment provided, return some default if self.xdata is None and xdata is None: self.xdata = np.arange(0, 1501) self.dtunit = dtunit self.dt = dt return np.arange(0, 1501) # set x for the first time, copying input if self.xdata is None: self.xdata = np.array(xdata) self.dtunit = dtunit self.dt = dt return np.arange(0, self.xdata.size) # no new data provided, no need to call this elif xdata is None: log.debug("set_xdata() called without argument when " + "xdata is already set. Nothing to adjust") return np.arange(0, self.xdata.size) # compare dtunits elif dtunit != self.dtunit and dtunit is not None: log.warning("'dtunit' does not match across added elements, " + "adjusting axis label to '[different units]'") regex = r'\[.*?\]' oldlabel = self.ax.get_xlabel() self.ax.set_xlabel(re.sub(regex, '[different units]', oldlabel)) # set dtunit to new value if not assigned yet elif self.dtunit is None and dtunit is not None: self.dtunit = dtunit # new data matches old data, nothing to adjust if np.array_equal(self.xdata, xdata) and self.dt == dt: return np.arange(0, self.xdata.size) # compare timescales dt elif self.dt < dt: log.debug('dt does not match,') scd = dt / self.dt if float(scd).is_integer(): log.debug( 'Changing axis values of new data (dt={})'.format(dt) + 'to match higher resolution of ' + 'old xaxis (dt={})'.format(self.dt)) scd = dt / self.dt xdata *= scd else: log.warning( "New 'dt={}' is not an integer multiple of ".format(dt) + "the previous 'dt={}\n".format(self.dt) + "\tPlotting with '[different units]'\n" + "\tAs a workaround, try adding the data with the " + "smallest 'dt' first") try: regex = r'\[.*?\]' oldlabel = self.ax.get_xlabel() self.ax.set_xlabel( re.sub(regex, '[different units]', oldlabel)) self.xlabel = re.sub(regex, '[different units]', self.xlabel) except TypeError: log.debug('Exception passed', exc_info=True) elif self.dt > dt: scd = self.dt / dt if float(scd).is_integer(): log.debug( "Changing 'dt' to new value 'dt={}'\n".format(dt) + "\tAdjusting existing axis values (dt={})".format(self.dt)) self.xdata *= scd self.dt = dt try: regex = r'\[.*?\]' oldlabel = self.ax.get_xlabel() newlabel = str('[{}{}]'.format(ut._printeger(self.dt), self.dtunit)) self.ax.set_xlabel(re.sub(regex, newlabel, oldlabel)) self.xlabel = re.sub(regex, newlabel, self.xlabel) except TypeError: pass else: log.warning( "old 'dt={}' is not an integer multiple ".format(self.dt) + "of the new value 'dt={}'\n".format(self.dt) + "\tPlotting with '[different units]'\n") try: regex = r'\[.*?\]' oldlabel = self.ax.get_xlabel() self.ax.set_xlabel( re.sub(regex, '[different units]', oldlabel)) self.xlabel = re.sub(regex, '[different units]', self.xlabel) except TypeError: pass # check if new is subset of old temp = np.union1d(self.xdata, xdata) if not np.array_equal(self.xdata, temp): log.debug('Rearranging present data') _, indtemp = ut._intersecting_index(self.xdata, temp) self.xdata = temp for ydx, col in enumerate(self.ydata): coln = np.full(self.xdata.size, np.nan) coln[indtemp] = col self.ydata[ydx] = coln # return list of indices where to place new ydata in the existing # (higher-resolution) notation indold, indnew = ut._intersecting_index(self.xdata, xdata) assert (len(indold) == len(xdata)) return indold
def overview(src, rks, fits, **kwargs): """ creates an A4 overview panel and returns the matplotlib figure element. No Argument checks are done """ # ratios = np.ones(4)*.75 # ratios[3] = 0.25 ratios = None # A4 in inches, should check rc params in the future # matplotlib changes the figure size when modifying subplots topshift = 0.925 fig, axes = plt.subplots(nrows=4, figsize=(8.27, 11.69 * topshift), gridspec_kw={"height_ratios": ratios}) # avoid huge file size for many trials due to separate layers. # everything below 0 gets rastered to the same layer. axes[0].set_rasterization_zorder(0) # ------------------------------------------------------------------ # # Time Series # ------------------------------------------------------------------ # tsout = OutputHandler(ax=axes[0]) tsout.add_ts(src, label='Trials') if (src.shape[0] > 1): try: prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] except Exception: prevclr = 'navy' log.debug('Exception getting color cycle', exc_info=True) tsout.add_ts(np.mean(src, axis=0), color=prevclr, label='Average') else: tsout.ax.legend().set_visible(False) tsout.ax.set_title('Time Series (Input Data)') tsout.ax.set_xlabel('t [{}{}]'.format(ut._printeger(rks[0].dt), rks[0].dtunit)) # ------------------------------------------------------------------ # # Mean Trial Activity # ------------------------------------------------------------------ # if (src.shape[0] > 1): # average trial activites as function of trial number taout = OutputHandler(rks[0].trialactivities, ax=axes[1]) try: err1 = rks[0].trialactivities - np.sqrt(rks[0].trialvariances) err2 = rks[0].trialactivities + np.sqrt(rks[0].trialvariances) prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] taout.ax.fill_between(np.arange(1, rks[0].numtrials + 1), err1, err2, color=prevclr, alpha=0.2) except Exception as e: log.debug('Exception adding std deviation to plot', exc_info=True) taout.ax.set_title('Mean Trial Activity and Std. Deviation') taout.ax.set_xlabel('Trial i') taout.ax.set_ylabel('$\\bar{A}_i$') else: # running average over the one trial to see if stays stationary numsegs = kwargs.get(numsegs) if 'numsegs' in kwargs else 50 ravg = np.zeros(numsegs) err1 = np.zeros(numsegs) err2 = np.zeros(numsegs) seglen = int(src.shape[1] / numsegs) for s in range(numsegs): temp = np.mean(src[0][s * seglen:(s + 1) * seglen]) ravg[s] = temp stddev = np.sqrt(np.var(src[0][s * seglen:(s + 1) * seglen])) err1[s] = temp - stddev err2[s] = temp + stddev taout = OutputHandler(ravg, ax=axes[1]) try: prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] taout.ax.fill_between(np.arange(1, numsegs + 1), err1, err2, color=prevclr, alpha=0.2) except Exception as e: log.debug('Exception adding std deviation to plot', exc_info=True) taout.ax.set_title( 'Average Activity and Stddev for {} Intervals'.format(numsegs)) taout.ax.set_xlabel('Interval i') taout.ax.set_ylabel('$\\bar{A}_i$') # ------------------------------------------------------------------ # # Coefficients and Fit results # ------------------------------------------------------------------ # cout = OutputHandler(rks + fits, ax=axes[2]) fitcurves = [] fitlabels = [] for i, f in enumerate(cout.fits): fitcurves.append(cout.fitcurves[i][0]) label = ut.math_from_doc(f.fitfunc, 5) label += '\n\n$\\tau={:.2f}${}\n'.format(f.tau, f.dtunit) if f.tauquantiles is not None: label += '$[{:.2f}:{:.2f}]$\n\n' \ .format(f.tauquantiles[0], f.tauquantiles[-1]) else: label += '\n\n' label += '$m={:.5f}$\n'.format(f.mre) if f.mrequantiles is not None: label +='$[{:.5f}:{:.5f}]$' \ .format(f.mrequantiles[0], f.mrequantiles[-1]) else: label += '\n' fitlabels.append(label) tempkwargs = { # 'title': 'Fitresults', 'ncol': len(fitlabels), 'loc': 'upper center', 'mode': 'expand', 'frameon': True, 'markerfirst': True, 'fancybox': False, # 'framealpha': 1, 'borderaxespad': 0, 'edgecolor': 'black', # hide handles 'handlelength': 0, 'handletextpad': 0, } try: axes[3].legend(fitcurves, fitlabels, **tempkwargs) except Exception: log.debug('Exception passed', exc_info=True) del tempkwargs['edgecolor'] axes[3].legend(fitcurves, fitlabels, **tempkwargs) # hide handles for handle in axes[3].get_legend().legendHandles: handle.set_visible(False) # center text for t in axes[3].get_legend().texts: t.set_multialignment('center') # apply stile and fill legend axes[3].get_legend().get_frame().set_linewidth(0.5) axes[3].axis('off') axes[3].set_title('Fitresults\n[$12.5\\%$:$87.5\\%$]') for a in axes: a.xaxis.set_tick_params(width=0.5) a.yaxis.set_tick_params(width=0.5) for s in a.spines: a.spines[s].set_linewidth(0.5) fig.tight_layout(h_pad=2.0) plt.subplots_adjust(top=topshift) title = kwargs.get('title') if 'title' in kwargs else None if (title is not None and title != ''): fig.suptitle(title + '\n', fontsize=14) if 'warning' in kwargs and kwargs.get('warning') is not None: s = u'\u26A0 {}'.format(kwargs.get('warning')) fig.text(.5, .01, s, fontsize=13, horizontalalignment='center', color='red') fig.text(.995, .005, 'v{}'.format(__version__), fontsize=8, horizontalalignment='right', color='silver') return fig
def save_meta(self, fname=''): """ Saves only the details/source used to create the plot. It is recommended to call this manually, if you decide to save the plots yourself or when you want only the fit results. Parameters ---------- fname : str, optional Path where to save, without file extension. Defaults to "./mre" """ if not isinstance(fname, str): fname = str(fname) if fname == '': fname = './mre' # try creating enclosing dir if not existing tempdir = os.path.abspath(os.path.expanduser(fname + "/../")) os.makedirs(tempdir, exist_ok=True) fname = os.path.expanduser(fname) log.info('Saving meta to {}.tsv'.format(fname)) # fits hdr = 'Mr. Estimator v{}\n'.format(__version__) try: for fdx, fit in enumerate(self.fits): hdr += '{}\n'.format('-' * 72) hdr += 'legendlabel: ' + str(self.fitlabels[fdx]) + '\n' hdr += '{}\n'.format('-' * 72) if fit.desc != '': hdr += 'description: ' + str(fit.desc) + '\n' hdr += 'm = {}\ntau = {} [{}]\n' \ .format(fit.mre, fit.tau, fit.dtunit) if fit.quantiles is not None: hdr += 'quantiles | tau [{}] | m:\n'.format(fit.dtunit) for i, q in enumerate(fit.quantiles): hdr += '{:6.3f} | '.format(fit.quantiles[i]) hdr += '{:8.3f} | '.format(fit.tauquantiles[i]) hdr += '{:8.8f}\n'.format(fit.mrequantiles[i]) hdr += '\n' hdr += 'fitrange: {} <= k <= {} [{}{}]\n'.format( fit.steps[0], fit.steps[-1], ut._printeger(fit.dt), fit.dtunit) hdr += 'function: ' + ut.math_from_doc(fit.fitfunc) + '\n' # hdr += '\twith parameters:\n' parname = list(inspect.signature(fit.fitfunc).parameters)[1:] parlen = len(max(parname, key=len)) for pdx, par in enumerate(self.fits[fdx].popt): unit = '' if parname[pdx] == 'nu': unit += '[1/{}]'.format(fit.dtunit) elif parname[pdx].find('tau') != -1: unit += '[{}]'.format(fit.dtunit) hdr += '\t{: <{width}}'.format(parname[pdx] + ' ' + unit, width=parlen + 5 + len(fit.dtunit)) hdr += ' = {}\n'.format(par) hdr += '\n' except Exception as e: log.debug('Exception passed', exc_info=True) # rks / ts labels = '' dat = [] if self.ydata is not None and len(self.ydata) != 0: hdr += '{}\n'.format('-' * 72) hdr += 'Data\n' hdr += '{}\n'.format('-' * 72) labels += '1_' + self.xlabel for ldx, label in enumerate(self.ylabels): labels += '\t' + str(ldx + 2) + '_' + label labels = labels.replace(' ', '_') dat = np.vstack((self.xdata, np.asarray(self.ydata))) np.savetxt(fname + '.tsv', np.transpose(dat), delimiter='\t', header=hdr + labels)
def overview(src, rks, fits, **kwargs): """ creates an A4 overview panel and returns the matplotlib figure element. No Argument checks are done """ ratios = np.ones(5) ratios[4] = 0.0001 # ratios=None # A5 in inches, should check rc params in the future # matplotlib changes the figure size when modifying subplots fig, axes = plt.subplots(nrows=5, figsize=(5.8, 8.3), gridspec_kw={"height_ratios": ratios}) # avoid huge file size for many trials due to separate layers. # everything below 0 gets rastered to the same layer. axes[0].set_rasterization_zorder(0) # ------------------------------------------------------------------ # # Time Series # ------------------------------------------------------------------ # tsout = OutputHandler(ax=axes[0]) tsout.add_ts(src, label="Trials") if src.shape[0] > 1: try: prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] except Exception: prevclr = "navy" log.debug("Exception getting color cycle", exc_info=True) tsout.add_ts(np.mean(src, axis=0), color=prevclr, label="Average") else: tsout.ax.legend().set_visible(False) tsout.ax.set_title("Time Series", fontweight="bold", loc="center") tsout.ax.set_title("(Input Data)", fontsize="medium", color="#646464", loc="right") tsout.ax.set_xlabel("t [{}{}]".format( ut._printeger(rks[0].dt) + " " if rks[0].dt != 1 else "", rks[0].dtunit)) # ------------------------------------------------------------------ # # Mean Trial Activity # ------------------------------------------------------------------ # if src.shape[0] > 1: # average trial activites as function of trial number taout = OutputHandler(rks[0].trialactivities, ax=axes[1]) try: err1 = rks[0].trialactivities - np.sqrt(rks[0].trialvariances) err2 = rks[0].trialactivities + np.sqrt(rks[0].trialvariances) prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] taout.ax.fill_between(np.arange(1, rks[0].numtrials + 1), err1, err2, color=prevclr, alpha=0.2) except Exception as e: log.debug("Exception adding std deviation to plot", exc_info=True) taout.ax.set_title("Mean Trial Activity and Std. Deviation", fontweight="bold") taout.ax.set_xlabel("Trial i") taout.ax.set_ylabel("$\\bar{A}_i$") else: # running average over the one trial to see if stays stationary numsegs = kwargs.get(numsegs) if "numsegs" in kwargs else 50 ravg = np.zeros(numsegs) err1 = np.zeros(numsegs) err2 = np.zeros(numsegs) seglen = int(src.shape[1] / numsegs) for s in range(numsegs): temp = np.mean(src[0][s * seglen:(s + 1) * seglen]) ravg[s] = temp stddev = np.sqrt(np.var(src[0][s * seglen:(s + 1) * seglen])) err1[s] = temp - stddev err2[s] = temp + stddev taout = OutputHandler(ravg, ax=axes[1]) try: prevclr = plt.rcParams["axes.prop_cycle"].by_key()["color"][0] taout.ax.fill_between(np.arange(1, numsegs + 1), err1, err2, color=prevclr, alpha=0.2) except Exception as e: log.debug("Exception adding std deviation to plot", exc_info=True) taout.ax.set_title( "Average Activity and Stddev for {} Intervals".format(numsegs), fontweight="bold", ) taout.ax.set_xlabel("Interval i") taout.ax.set_ylabel("$\\bar{A}_i$") # ------------------------------------------------------------------ # # Coefficients and Fit results # ------------------------------------------------------------------ # cout = OutputHandler(rks + fits, ax=axes[2]) fitcurves = [] fitlabels = [] for i, f in enumerate(cout.fits): fitcurves.append(cout.fitcurves[i][0]) label = ut.math_from_doc(f.fitfunc, 5) label += "\n\n$\\tau={:.2f}${}\n".format(f.tau, f.dtunit) if f.tauquantiles is not None: label += "$[{:.2f}:{:.2f}]$\n\n".format(f.tauquantiles[0], f.tauquantiles[-1]) else: label += "\n\n" label += "$m={:.5f}$\n".format(f.mre) if f.mrequantiles is not None: label += "$[{:.5f}:{:.5f}]$".format(f.mrequantiles[0], f.mrequantiles[-1]) else: label += "\n" fitlabels.append(label) tempkwargs = { # 'title': 'Fitresults', "ncol": len(fitlabels), "loc": "upper center", "mode": "expand", "frameon": True, "markerfirst": True, "fancybox": False, # 'framealpha': 1, "borderaxespad": 0, "edgecolor": "black", # hide handles "handlelength": 0, "handletextpad": 0, } try: axes[3].legend(fitcurves, fitlabels, **tempkwargs) except Exception: log.debug("Exception passed", exc_info=True) del tempkwargs["edgecolor"] axes[3].legend(fitcurves, fitlabels, **tempkwargs) # hide handles for handle in axes[3].get_legend().legendHandles: handle.set_visible(False) # center text for t in axes[3].get_legend().texts: t.set_multialignment("center") # apply stile and fill legend axes[3].get_legend().get_frame().set_linewidth(0.5) axes[3].axis("off") axes[3].set_title( "Fitresults", fontweight="bold", loc="center", ) axes[3].set_title( " (with CI: [$12.5\\%:87.5\\%$])", color="#646464", fontsize="medium", loc="right", ) for a in axes: a.xaxis.set_tick_params(width=0.5) a.yaxis.set_tick_params(width=0.5) for s in a.spines: a.spines[s].set_linewidth(0.5) # dummy axes for version and warnings axes[4].axis("off") fig.tight_layout() plt.subplots_adjust(hspace=0.8, top=0.95, bottom=0.0, left=0.1, right=0.99) title = kwargs.get("title") if "title" in kwargs else None if title is not None and title != "": fig.suptitle(title, fontsize=14) plt.subplots_adjust(top=0.91) if "warning" in kwargs and kwargs.get("warning") is not None: s = "\u26A0 {}".format(kwargs.get("warning")) fig.text(0.5, 0.01, s, fontsize=13, horizontalalignment="center", color="red") fig.text( 0.995, 0.005, "v{}".format(__version__), fontsize="small", horizontalalignment="right", color="#646464", ) return fig
def save_meta(self, fname=""): """ Saves only the details/source used to create the plot. It is recommended to call this manually, if you decide to save the plots yourself or when you want only the fit results. Parameters ---------- fname : str, optional Path where to save, without file extension. Defaults to "./mre" """ if not isinstance(fname, str): fname = str(fname) if fname == "": fname = "./mre" # try creating enclosing dir if not existing tempdir = os.path.abspath(os.path.expanduser(fname + "/../")) os.makedirs(tempdir, exist_ok=True) fname = os.path.expanduser(fname) log.info("Saving meta to {}.tsv".format(fname)) # fits hdr = "Mr. Estimator v{}\n".format(__version__) try: for fdx, fit in enumerate(self.fits): hdr += "{}\n".format("-" * 72) hdr += "legendlabel: " + str(self.fitlabels[fdx]) + "\n" hdr += "{}\n".format("-" * 72) if fit.desc != "": hdr += "description: " + str(fit.desc) + "\n" hdr += "m = {}\ntau = {} [{}]\n".format( fit.mre, fit.tau, fit.dtunit) if fit.quantiles is not None: hdr += "quantiles | tau [{}] | m:\n".format(fit.dtunit) for i, q in enumerate(fit.quantiles): hdr += "{:6.3f} | ".format(fit.quantiles[i]) hdr += "{:8.3f} | ".format(fit.tauquantiles[i]) hdr += "{:8.8f}\n".format(fit.mrequantiles[i]) hdr += "\n" hdr += "fitrange: {} <= k <= {} [{} {}]\n".format( fit.steps[0], fit.steps[-1], ut._printeger(fit.dt), fit.dtunit) hdr += "function: " + ut.math_from_doc(fit.fitfunc) + "\n" # hdr += '\twith parameters:\n' parname = list(inspect.signature(fit.fitfunc).parameters)[1:] parlen = len(max(parname, key=len)) for pdx, par in enumerate(self.fits[fdx].popt): unit = "" if parname[pdx] == "nu": unit += "[1/{}]".format(fit.dtunit) elif parname[pdx].find("tau") != -1: unit += "[{}]".format(fit.dtunit) hdr += "\t{: <{width}}".format(parname[pdx] + " " + unit, width=parlen + 5 + len(fit.dtunit)) hdr += " = {}\n".format(par) hdr += "\n" except Exception as e: log.debug("Exception passed", exc_info=True) # rks / ts labels = "" dat = [] if self.ydata is not None and len(self.ydata) != 0: hdr += "{}\n".format("-" * 72) hdr += "Data\n" hdr += "{}\n".format("-" * 72) labels += "1_" + self.xlabel for ldx, label in enumerate(self.ylabels): labels += "\t" + str(ldx + 2) + "_" + label labels = labels.replace(" ", "_") dat = np.vstack((self.xdata, np.asarray(self.ydata))) np.savetxt(fname + ".tsv", np.transpose(dat), delimiter="\t", header=hdr + labels)