コード例 #1
0
ファイル: vizLib.py プロジェクト: joeydavis/vizLib
def plotMRMCsv(df, samples = None, sampleField='File Name', colors=None, labelHash=None, yAxisLabel=None, legendLoc = 'upper center', areaField = 'Area',
               num = ['light '], den = ['heavy '], proteins = None, alpha=1.0, markersize=10, title=None, legendBBox = (0.5, 1.0), proteinField = 'Protein Name',
               median = True, medianMarker = '-', legend=True, legendCols=5, normProtein=None, medianMarkerInc = 2.5, normSample=None,
               yAxis=None, yMin = 0.0, yMax = 10.0, yTicks=2, figSize=(15,5), grid=False, scaleProt=None, markeredgewidth=1.0):
    df.loc[:,'currentCalc'] = mrmTools.calcValue(df, num, den, field=areaField)
    #print 'running code'
    if scaleProt is None:
        scaleProt = {}
    if samples is None:
        samples = qMS.sort_nicely(list(df[sampleField].unique()))
    if colors is None:
        colors = pylab.cm.jet([float(i)/float(len(samples)) for i in range(len(samples))])
    if proteins is None:
        proteins = qMS.sort_nicely(list(df[proteinField].unique()))
    if yAxis is None:
        interval = (yMax*1.0-yMin)/(yTicks+1.0)
        yAxis = [yMin+i*interval for i in range(0,yTicks+2)]
    if labelHash is None:
        labelHash = {i:i for i in samples}
    for i in proteins:
        if i not in scaleProt.keys():
            scaleProt[i] = 1.0
    if not normSample is None:
        sampDF = df[df[sampleField]==normSample]
        normValue = 1.0
        if not normProtein is None:
            normValue = sampDF[sampDF[proteinField]==normProtein]['currentCalc'].median()        
        for p in proteins:
            scaleProt[p] = (sampDF[sampDF[proteinField]==p]['currentCalc']/normValue).median()
    xOffset = 1.0/(len(samples)+1)
    f = pylab.figure(figsize=figSize)
    ax = f.add_subplot(111)
    for i, s in enumerate(samples):
        sampDF = df[df[sampleField]==s]
        ax.plot(numpy.NaN, numpy.NaN, marker = 'o', color=colors[i], label=labelHash[s], markersize=markersize*1.5, markeredgewidth=markeredgewidth)
        if not normProtein is None:
            normValue = sampDF[sampDF[proteinField]==normProtein]['currentCalc'].median()
        else:
            normValue = 1.0
        for j, p in enumerate(proteins):
            ax.plot([float(j+(i+1)*xOffset)]*len(sampDF[sampDF[proteinField]==p]),
                    sampDF[sampDF[proteinField]==p]['currentCalc']/(normValue*scaleProt[p]), 
                    'o', alpha=alpha, color=colors[i], markersize=markersize, markeredgewidth=markeredgewidth)
            if median:
                try:
                    ax.plot(float(j+(i+1)*xOffset), sampDF[sampDF[proteinField]==p]['currentCalc'].median()/(normValue*scaleProt[p]), marker='_', 
                            mew=markersize/3, color='black', markersize=markersize*medianMarkerInc)
                    #print str(s) + '\t' + str(p) + '\t' + str(sampDF[sampDF[proteinField]==p]['currentCalc'].median()/(normValue*scaleProt[p]))
                except:
                    print 'error'
    if legend:
        ax.legend(ncol=legendCols, loc=legendLoc, bbox_to_anchor=legendBBox,
                fancybox=True, shadow=False)
    ax.set_ylim(yMin, yMax)
    ax.set_yticks(yAxis)
    pylab.xticks(range(len(proteins)), proteins, rotation=45)
    pylab.xlim(0, len(proteins))
    if grid:
        pylab.grid()
        cleanAxis(ax, ticksOnly=True)
    if not title is None:
        ax.set_title(title)
    if not yAxisLabel is None:
        ax.set_ylabel(yAxisLabel)
    return ax
コード例 #2
0
ファイル: vizLib.py プロジェクト: joeydavis/vizLib
def plotMRMScatterPlot(df, samples=None, labelHash=None, yAxisLabel=None, proteins=None, alpha=1.0, legend=True, legendCols=5, median=True,
                       grid=True, yAxis=None, num=['light '], den=['heavy '], yTicks=4, sampleLocations=None, sampleField='File Name', ax=None,
                       medianMarkerInc=1.25, colors=None, figSize=(10,10), markersize=10, fitLine=False, fitR2=False, medianColor='black',
                       yMin=0, yMax=10, xMin=None, xMax=None, title=None, zOrder=None, medianOnly=None, proteinNameHeader = 'Protein Name'):
    df.loc[:,'currentCalc'] = mrmTools.calcValue(df, num, den)
    if samples is None:
        samples = qMS.sort_nicely(list(df[sampleField].unique()))
    if proteins is None:
        proteins = qMS.sort_nicely(list(df[proteinNameHeader].unique()))
    if colors is None:
        colors = pylab.cm.jet([float(i)/float(len(proteins)) for i in range(len(proteins))])
    if yAxis is None:
        interval = (yMax*1.0-yMin)/(yTicks+1.0)
        yAxis = [yMin+i*interval for i in range(0,yTicks+2)]
    if labelHash is None:
        labelHash = {i:i for i in proteins}
    if sampleLocations is None:
        sampleLocations = {samples[i]:i for i in range(len(samples))}
    if xMin is None:
        xMin = min(sampleLocations.values())
    if xMax is None:
        xMax = max(sampleLocations.values())
    if zOrder is None:
        zOrder = [i*2+1 for i in range(len(proteins))]
    if medianOnly is None:
        medianOnly = [False]*len(proteins)

    if ax is None:
        f = pylab.figure(figsize=figSize)
        ax = f.add_subplot(111)
    for i, p in enumerate(proteins):
        protDF = df[df[proteinNameHeader] == p]
        ax.plot(numpy.NaN, numpy.NaN, marker = 'o', color=colors[i], label=labelHash[p], markersize=markersize*1.5)
        ysFit = []
        xsFit = []
        for j, s in enumerate(samples):
            if not medianOnly[i]:
                ax.plot([float(sampleLocations[s])]*(len(protDF[protDF[sampleField] == s])),
                         protDF[protDF[sampleField]==s]['currentCalc'], 
                        'o', alpha=alpha, color=colors[i], markersize=markersize, zorder=zOrder[i])
            if median:
                marker='_'
                mew=markersize/3
                zorder=100
                if medianColor is None:
                    medianColor = colors[i]
                if medianOnly[i]:
                    marker='o'
                    medianColor=colors[i]
                    mew = 0
                    zorder=zOrder[i]
                ax.plot(sampleLocations[s], protDF[protDF[sampleField]==s]['currentCalc'].median(), marker=marker, 
                        mew=mew, color=medianColor, markersize=markersize*medianMarkerInc, zorder=zorder)
            ysFit.append(protDF[protDF[sampleField]==s]['currentCalc'].median())
            xsFit.append(sampleLocations[s])
        if fitLine:
            pFit = numpy.polyfit(xsFit, ysFit, 1)
            xsFit.append(xMin)
            xsFit.append(xMax)
            ax.plot(numpy.array(xsFit), pFit[0]*numpy.array(xsFit)+pFit[1], '-', color=colors[i], zorder=zOrder[i]-1)
    if legend:
        ax.legend(ncol=legendCols, loc='upper center', bbox_to_anchor=(0.5, 1.0),
                fancybox=True, shadow=False)
    ax.set_ylim(yMin, yMax)
    ax.set_yticks(yAxis)
    pylab.xticks(sampleLocations.values())
    ax.set_xlim(xMin, xMax)
    if grid:
        pylab.grid()
        cleanAxis(ax, ticksOnly=True)
    if not title is None:
        ax.set_title(title)
    if not yAxisLabel is None:
        ax.set_ylabel(yAxisLabel)
    return ax