# running group level 1 (perform intensity normalisation, calculate response functions, average response ) elif app.args.analysis_level == "group1": print('performing intensity normalisation') intensitynorm_output = os.path.join(template_dir, 'inorm_output') if not os.path.exists(intensitynorm_output): os.mkdir(intensitynorm_output) fa_template = os.path.join(template_dir, 'fa_template.mif') app.checkOutputPath(fa_template) fa_wm_mask = os.path.join(template_dir, 'fa_wm_mask.mif') app.checkOutputPath(fa_wm_mask) # TODO Check if outputs exist app.gotoTempDir() os.mkdir('inorm_input') os.mkdir('mask_input') # make symlinks to all dwi intensity normalisation inputs in single directory for subj in glob.glob(os.path.join(all_subjects_dir, '*')): os.symlink( os.path.join(subj, 'dwi_preproc_bias.mif'), os.path.join('inorm_input', os.path.basename(subj) + '.mif')) os.symlink(os.path.join(subj, 'mask.mif'), os.path.join('mask_input', os.path.basename(subj) + '.mif')) run.command('dwiintensitynorm ' + 'inorm_input ' + 'mask_input ' + intensitynorm_output + ' ' + fa_template + ' ' + fa_wm_mask +
def runGroup(output_dir): # Check presence of all required input files before proceeding # Pre-calculate paths of all files since many will be used in more than one location class subjectPaths(object): def __init__(self, label): self.in_dwi = os.path.join(output_dir, label, 'dwi', label + '_dwi.nii.gz') self.in_bvec = os.path.join(output_dir, label, 'dwi', label + '_dwi.bvec') self.in_bval = os.path.join(output_dir, label, 'dwi', label + '_dwi.bval') self.in_json = os.path.join(output_dir, label, 'dwi', label + '_dwi.json') self.in_rf = os.path.join(output_dir, label, 'dwi', label + '_response.txt') self.in_connectome = os.path.join(output_dir, label, 'connectome', label + '_connectome.csv') self.in_mu = os.path.join(output_dir, label, 'connectome', label + '_mu.txt') for entry in vars(self).values(): if not os.path.exists(entry): app.error( 'Unable to find critical subject data (expected location: ' + entry + ')') with open(self.in_mu, 'r') as f: self.mu = float(f.read()) self.RF = [] with open(self.in_rf, 'r') as f: for line in f: self.RF.append([float(v) for v in line.split()]) self.temp_mask = os.path.join('masks', label + '.mif') self.temp_fa = os.path.join('images', label + '.mif') self.temp_bzero = os.path.join('bzeros', label + '.mif') self.temp_warp = os.path.join('warps', label + '.mif') self.temp_voxels = os.path.join('voxels', label + '.mif') self.median_bzero = 0.0 self.dwiintensitynorm_factor = 1.0 self.RF_multiplier = 1.0 self.global_multiplier = 1.0 self.temp_connectome = os.path.join('connectomes', label + '.csv') self.out_scale_bzero = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_bzero.csv') self.out_scale_RF = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_response.csv') self.out_connectome = os.path.join( output_dir, label, 'connectome', label + '_connectome_scaled.csv') self.label = label subject_list = [ 'sub-' + sub_dir.split("-")[-1] for sub_dir in glob.glob(os.path.join(output_dir, 'sub-*')) ] if not subject_list: app.error( 'No processed subject data found in output directory for group analysis' ) subjects = [] for label in subject_list: subjects.append(subjectPaths(label)) app.makeTempDir() app.gotoTempDir() # First pass through subject data in group analysis: # - Grab DWI data (written back from single-subject analysis back into BIDS format) # - Generate mask and FA images to be used in populate template generation # - Generate mean b=0 image for each subject for later use progress = app.progressBar('Importing and preparing subject data', len(subjects)) run.function(os.makedirs, 'bzeros') run.function(os.makedirs, 'images') run.function(os.makedirs, 'masks') for s in subjects: grad_import_option = ' -fslgrad ' + s.in_bvec + ' ' + s.in_bval run.command('dwi2mask ' + s.in_dwi + ' ' + s.temp_mask + grad_import_option) run.command('dwi2tensor ' + s.in_dwi + ' - -mask ' + s.temp_mask + grad_import_option + ' | tensor2metric - -fa ' + s.temp_fa) run.command('dwiextract ' + s.in_dwi + grad_import_option + ' - -bzero | mrmath - mean ' + s.temp_bzero + ' -axis 3') progress.increment() progress.done() # First group-level calculation: Generate the population FA template app.console( 'Generating population template for inter-subject intensity normalisation WM mask derivation' ) run.command( 'population_template images -mask_dir masks -warp_dir warps template.mif ' '-type rigid_affine_nonlinear -rigid_scale 0.25,0.5,0.8,1.0 -affine_scale 0.7,0.8,1.0,1.0 ' '-nl_scale 0.5,0.75,1.0,1.0,1.0 -nl_niter 5,5,5,5,5 -linear_no_pause') file.delTemporary('images') file.delTemporary('masks') # Second pass through subject data in group analysis: # - Warp template FA image back to subject space & threshold to define a WM mask in subject space # - Calculate the median subject b=0 value within this mask # - Store this in a file, and contribute to calculation of the mean of these values across subjects # - Contribute to the group average response function progress = app.progressBar( 'Generating group-average response function and intensity normalisation factors', len(subjects) + 1) run.function(os.makedirs, 'voxels') sum_median_bzero = 0.0 sum_RF = [] for s in subjects: run.command('mrtransform template.mif -warp_full ' + s.temp_warp + ' - -from 2 -template ' + s.temp_bzero + ' | ' 'mrthreshold - ' + s.temp_voxels + ' -abs 0.4') s.median_bzero = float( image.statistic(s.temp_bzero, 'median', '-mask ' + s.temp_voxels)) file.delTemporary(s.temp_bzero) file.delTemporary(s.temp_voxels) file.delTemporary(s.temp_warp) sum_median_bzero += s.median_bzero if sum_RF: sum_RF = [[a + b for a, b in zip(one, two)] for one, two in zip(sum_RF, s.RF)] else: sum_RF = s.RF progress.increment() file.delTemporary('bzeros') file.delTemporary('voxels') file.delTemporary('warps') progress.done() # Second group-level calculation: # - Calculate the mean of median b=0 values # - Calculate the mean response function, and extract the l=0 values from it mean_median_bzero = sum_median_bzero / len(subjects) mean_RF = [[v / len(subjects) for v in line] for line in sum_RF] mean_RF_lzero = [line[0] for line in mean_RF] # Third pass through subject data in group analysis: # - Scale the connectome strengths: # - Multiply by SIFT proportionality coefficient mu # - Multiply by (mean median b=0) / (subject median b=0) # - Multiply by (subject RF size) / (mean RF size) # (needs to account for multi-shell data) # - Write the result to file progress = app.progressBar( 'Applying normalisation scaling to subject connectomes', len(subjects)) run.function(os.makedirs, 'connectomes') for s in subjects: RF_lzero = [line[0] for line in s.RF] s.RF_multiplier = 1.0 for (mean, subj) in zip(mean_RF_lzero, RF_lzero): s.RF_multiplier = s.RF_multiplier * subj / mean # Don't want to be scaling connectome independently for differences in RF l=0 terms across all shells; # use the geometric mean of the per-shell scale factors s.RF_multiplier = math.pow(s.RF_multiplier, 1.0 / len(mean_RF_lzero)) s.bzero_multiplier = mean_median_bzero / s.median_bzero s.global_multiplier = s.mu * s.bzero_multiplier * s.RF_multiplier connectome = [] with open(s.in_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) with open(s.temp_connectome, 'w') as f: for line in connectome: f.write(' '.join([str(v * s.global_multiplier) for v in line]) + '\n') progress.increment() progress.done() # Third group-level calculation: Generate the group mean connectome # For any higher-level analysis (e.g. NBSE, computing connectome global measures, etc.), # trying to incorporate such analysis into this particular pipeline script is likely to # overly complicate the interface, and not actually provide much in terms of # convenience / reproducibility guarantees. The primary functionality of this group-level # analysis is therefore to achieve inter-subject connection density normalisation; users # then have the flexibility to subsequently analyse the data however they choose (ideally # based on subject classification data provided with the BIDS-compliant dataset). progress = app.progressBar('Calculating group mean connectome', len(subjects) + 1) mean_connectome = [] for s in subjects: connectome = [] with open(s.temp_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) if mean_connectome: mean_connectome = [[c1 + c2 for c1, c2 in zip(r1, r2)] for r1, r2 in zip(mean_connectome, connectome)] else: mean_connectome = connectome progress.increment() mean_connectome = [[v / len(subjects) for v in row] for row in mean_connectome] progress.done() # Write results of interest back to the output directory; # both per-subject and group information progress = app.progressBar('Writing results to output directory', len(subjects) + 2) for s in subjects: run.function(shutil.copyfile, s.temp_connectome, s.out_connectome) with open(s.out_scale_bzero, 'w') as f: f.write(str(s.bzero_multiplier)) with open(s.out_scale_RF, 'w') as f: f.write(str(s.RF_multiplier)) progress.increment() with open(os.path.join(output_dir, 'mean_response.txt'), 'w') as f: for row in mean_RF: f.write(' '.join([str(v) for v in row]) + '\n') progress.increment() with open(os.path.join(output_dir, 'mean_connectome.csv'), 'w') as f: for row in mean_connectome: f.write(' '.join([str(v) for v in row]) + '\n') progress.done()
run.command('mrconvert -stride -1,2,3,4 -fslgrad ' + bveclist[0] + ' ' + bvallist[0] + ' ' + ''.join(DWInlist) + ''.join(DWIext) + ' ' + path.toTemp('dwi.mif',True)) else: run.command('mrconvert -stride -1,2,3,4 ' + ''.join(DWInlist) + ' ' + path.toTemp('dwi.mif',True)) else: for idx,i in enumerate(DWInlist): if not isdicom: run.command('mrconvert -stride -1,2,3,4 -fslgrad ' + bveclist[idx] + ' ' + bvallist[idx] + ' ' + i + DWIext[idx] + ' ' + path.toTemp('dwi' + str(idx) + '.mif',True)) else: run.command('mrconvert -stride -1,2,3,4 ' + i + ' ' + path.toTemp('dwi' + str(idx) + '.mif',True)) dwi_header = image.Header(path.toTemp('dwi' + str(idx) + '.mif',True)) dwi_ind_size.append([ int(s) for s in dwi_header.size() ]) miflist.append(path.toTemp('dwi' + str(idx) + '.mif',True)) DWImif = ' '.join(miflist) run.command('mrcat -axis 3 ' + DWImif + ' ' + path.toTemp('dwi.mif',True)) app.gotoTempDir() # get diffusion header info - check to make sure all values are valid for processing dwi_header = image.Header(path.toTemp('dwi.mif',True)) dwi_size = [ int(s) for s in dwi_header.size() ] grad = dwi_header.keyval()['dw_scheme'] grad = [ line for line in grad ] grad = [ [ float(f) for f in line ] for line in grad ] stride = dwi_header.strides() num_volumes = 1 if len(dwi_size) == 4: num_volumes = dwi_size[3] bval = [i[3] for i in grad] nvols = [i[3] for i in dwi_ind_size] for idx,i in enumerate(DWInlist):
def runSubject(bids_dir, label, output_prefix): output_dir = os.path.join(output_prefix, label) if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) os.makedirs(os.path.join(output_dir, 'connectome')) os.makedirs(os.path.join(output_dir, 'dwi')) fsl_path = os.environ.get('FSLDIR', '') if not fsl_path: app.error( 'Environment variable FSLDIR is not set; please run appropriate FSL configuration script' ) flirt_cmd = fsl.exeName('flirt') fslanat_cmd = fsl.exeName('fsl_anat') fsl_suffix = fsl.suffix() unring_cmd = 'unring.a64' if not find_executable(unring_cmd): app.console('Command \'' + unring_cmd + '\' not found; cannot perform Gibbs ringing removal') unring_cmd = '' dwibiascorrect_algo = '-ants' if not find_executable('N4BiasFieldCorrection'): # Can't use findFSLBinary() here, since we want to proceed even if it's not found if find_executable('fast') or find_executable('fsl5.0-fast'): dwibiascorrect_algo = '-fsl' app.console('Could not find ANTs program N4BiasFieldCorrection; ' 'using FSL FAST for bias field correction') else: dwibiascorrect_algo = '' app.warn( 'Could not find ANTs program \'N4BiasFieldCorrection\' or FSL program \'fast\'; ' 'will proceed without performing DWI bias field correction') if not app.args.parcellation: app.error( 'For participant-level analysis, desired parcellation must be provided using the -parcellation option' ) parc_image_path = '' parc_lut_file = '' mrtrix_lut_file = os.path.join( os.path.dirname(os.path.abspath(app.__file__)), os.pardir, os.pardir, 'share', 'mrtrix3', 'labelconvert') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': if not 'FREESURFER_HOME' in os.environ: app.error( 'Environment variable FREESURFER_HOME not set; please verify FreeSurfer installation' ) if not find_executable('recon-all'): app.error( 'Could not find FreeSurfer script recon-all; please verify FreeSurfer installation' ) parc_lut_file = os.path.join(os.environ['FREESURFER_HOME'], 'FreeSurferColorLUT.txt') if app.args.parcellation == 'fs_2005': mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_default.txt') else: mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_a2009s.txt') if app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': mni152_path = os.path.join(fsl_path, 'data', 'standard', 'MNI152_T1_1mm.nii.gz') if not os.path.isfile(mni152_path): app.error( 'Could not find MNI152 template image within FSL installation (expected location: ' + mni152_path + ')') if app.args.parcellation == 'aal': parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal.txt') else: parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal2.txt') if parc_image_path and not os.path.isfile(parc_image_path): if app.args.atlas_path: parc_image_path = [ parc_image_path, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_image_path)) ] if os.path.isfile(parc_image_path[1]): parc_image_path = parc_image_path[1] else: app.error( 'Could not find parcellation image (tested locations: ' + str(parc_image_path) + ')') else: app.error( 'Could not find parcellation image (expected location: ' + parc_image_path + ')') if not os.path.isfile(parc_lut_file): if app.args.atlas_path: parc_lut_file = [ parc_lut_file, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_lut_file)) ] if os.path.isfile(parc_lut_file[1]): parc_lut_file = parc_lut_file[1] else: app.error( 'Could not find parcellation lookup table file (tested locations: ' + str(parc_lut_file) + ')') else: app.error( 'Could not find parcellation lookup table file (expected location: ' + parc_lut_file + ')') if not os.path.exists(mrtrix_lut_file): app.error( 'Could not find MRtrix3 connectome lookup table file (expected location: ' + mrtrix_lut_file + ')') app.makeTempDir() # Need to perform an initial import of JSON data using mrconvert; so let's grab the diffusion gradient table as well # If no bvec/bval present, need to go down the directory listing # Only try to import JSON file if it's actually present # direction in the acquisition they'll need to be split across multiple files # May need to concatenate more than one input DWI, since if there's more than one phase-encode direction # in the acquired DWIs (i.e. not just those used for estimating the inhomogeneity field), they will # need to be stored as separate NIfTI files in the 'dwi/' directory. dwi_image_list = glob.glob( os.path.join(bids_dir, label, 'dwi', label) + '*_dwi.nii*') dwi_index = 1 for entry in dwi_image_list: # os.path.split() falls over with .nii.gz extensions; only removes the .gz prefix = entry.split(os.extsep)[0] if os.path.isfile(prefix + '.bval') and os.path.isfile(prefix + '.bvec'): prefix = prefix + '.' else: prefix = os.path.join(bids_dir, 'dwi') if not (os.path.isfile(prefix + 'bval') and os.path.isfile(prefix + 'bvec')): app.error( 'Unable to locate valid diffusion gradient table for image \'' + entry + '\'') grad_import_option = ' -fslgrad ' + prefix + 'bvec ' + prefix + 'bval' json_path = prefix + 'json' if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path else: json_import_option = '' run.command('mrconvert ' + entry + grad_import_option + json_import_option + ' ' + path.toTemp('dwi' + str(dwi_index) + '.mif', True)) dwi_index += 1 # Go hunting for reversed phase-encode data dedicated to field map estimation fmap_image_list = [] fmap_dir = os.path.join(bids_dir, label, 'fmap') fmap_index = 1 if os.path.isdir(fmap_dir): if app.args.preprocessed: app.error('fmap/ directory detected for subject \'' + label + '\' despite use of ' + option_prefix + 'preprocessed option') fmap_image_list = glob.glob( os.path.join(fmap_dir, label) + '_dir-*_epi.nii*') for entry in fmap_image_list: prefix = entry.split(os.extsep)[0] json_path = prefix + '.json' with open(json_path, 'r') as f: json_elements = json.load(f) if 'IntendedFor' in json_elements and not any( i.endswith(json_elements['IntendedFor']) for i in dwi_image_list): app.console('Image \'' + entry + '\' is not intended for use with DWIs; skipping') continue if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path # fmap files will not come with any gradient encoding in the JSON; # therefore we need to add it manually ourselves so that mrcat / mrconvert can # appropriately handle the table once these images are concatenated with the DWIs fmap_image_size = image.Header(entry).size() fmap_image_num_volumes = 1 if len( fmap_image_size) == 3 else fmap_image_size[3] run.command('mrconvert ' + entry + json_import_option + ' -set_property dw_scheme \"' + '\\n'.join(['0,0,1,0'] * fmap_image_num_volumes) + '\" ' + path.toTemp('fmap' + str(fmap_index) + '.mif', True)) fmap_index += 1 else: app.warn('No corresponding .json file found for image \'' + entry + '\'; skipping') fmap_image_list = [ 'fmap' + str(index) + '.mif' for index in range(1, fmap_index) ] # If there's no data in fmap/ directory, need to check to see if there's any phase-encoding # contrast within the input DWI(s) elif len(dwi_image_list) < 2 and not app.args.preprocessed: app.error( 'Inadequate data for pre-processing of subject \'' + label + '\': No phase-encoding contrast in input DWIs or fmap/ directory') dwi_image_list = [ 'dwi' + str(index) + '.mif' for index in range(1, dwi_index) ] # Import anatomical image run.command('mrconvert ' + os.path.join(bids_dir, label, 'anat', label + '_T1w.nii.gz') + ' ' + path.toTemp('T1.mif', True)) cwd = os.getcwd() app.gotoTempDir() dwipreproc_se_epi = '' dwipreproc_se_epi_option = '' # For automated testing, down-sampled images are used. However, this invalidates the requirements of # both MP-PCA denoising and Gibbs ringing removal. In addition, eddy can still take a long time # despite the down-sampling. Therefore, provide images that have been pre-processed to the stage # where it is still only DWI, JSON & bvecs/bvals that need to be provided. if app.args.preprocessed: if len(dwi_image_list) > 1: app.error( 'If DWIs have been pre-processed, then only a single DWI file should need to be provided' ) app.console( 'Skipping MP-PCA denoising, ' + ('Gibbs ringing removal, ' if unring_cmd else '') + 'distortion correction and bias field correction due to use of ' + option_prefix + 'preprocessed option') run.function(os.rename, dwi_image_list[0], 'dwi.mif') else: # Do initial image pre-processing (denoising, Gibbs ringing removal if available, distortion correction & bias field correction) as normal # Concatenate any SE EPI images with the DWIs before denoising (& unringing), then # separate them again after the fact dwidenoise_input = 'dwidenoise_input.mif' fmap_num_volumes = 0 if fmap_image_list: run.command('mrcat ' + ' '.join(fmap_image_list) + ' fmap_cat.mif -axis 3') for i in fmap_image_list: file.delTemporary(i) fmap_num_volumes = image.Header('fmap_cat.mif').size()[3] dwidenoise_input = 'all_cat.mif' run.command('mrcat fmap_cat.mif ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') file.delTemporary('fmap_cat.mif') else: # Even if no explicit fmap images, may still need to concatenate multiple DWI inputs if len(dwi_image_list) > 1: run.command('mrcat ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') else: run.function(shutil.move, dwi_image_list[0], dwidenoise_input) for i in dwi_image_list: file.delTemporary(i) # Step 1: Denoise run.command('dwidenoise ' + dwidenoise_input + ' dwi_denoised.' + ('nii' if unring_cmd else 'mif')) if unring_cmd: run.command('mrinfo ' + dwidenoise_input + ' -json_keyval input.json') file.delTemporary(dwidenoise_input) # Step 2: Gibbs ringing removal (if available) if unring_cmd: run.command(unring_cmd + ' dwi_denoised.nii dwi_unring' + fsl_suffix + ' -n 100') file.delTemporary('dwi_denoised.nii') unring_output_path = fsl.findImage('dwi_unring') run.command('mrconvert ' + unring_output_path + ' dwi_unring.mif -json_import input.json') file.delTemporary(unring_output_path) file.delTemporary('input.json') # If fmap images and DWIs have been concatenated, now is the time to split them back apart dwipreproc_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' if fmap_num_volumes: cat_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' dwipreproc_se_epi = 'se_epi.mif' run.command('mrconvert ' + cat_input + ' ' + dwipreproc_se_epi + ' -coord 3 0:' + str(fmap_num_volumes - 1)) cat_num_volumes = image.Header(cat_input).size()[3] run.command('mrconvert ' + cat_input + ' dwipreproc_in.mif -coord 3 ' + str(fmap_num_volumes) + ':' + str(cat_num_volumes - 1)) file.delTemporary(dwipreproc_input) dwipreproc_input = 'dwipreproc_in.mif' dwipreproc_se_epi_option = ' -se_epi ' + dwipreproc_se_epi # Step 3: Distortion correction run.command('dwipreproc ' + dwipreproc_input + ' dwi_preprocessed.mif -rpe_header' + dwipreproc_se_epi_option) file.delTemporary(dwipreproc_input) if dwipreproc_se_epi: file.delTemporary(dwipreproc_se_epi) # Step 4: Bias field correction if dwibiascorrect_algo: run.command('dwibiascorrect dwi_preprocessed.mif dwi.mif ' + dwibiascorrect_algo) file.delTemporary('dwi_preprocessed.mif') else: run.function(shutil.move, 'dwi_preprocessed.mif', 'dwi.mif') # No longer branching based on whether or not -preprocessed was specified # Step 5: Generate a brain mask for DWI run.command('dwi2mask dwi.mif dwi_mask.mif') # Step 6: Perform brain extraction on the T1 image in its original space # (this is necessary for histogram matching prior to registration) # Use fsl_anat script run.command('mrconvert T1.mif T1.nii -stride -1,+2,+3') run.command(fslanat_cmd + ' -i T1.nii --noseg --nosubcortseg') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain_mask') + ' T1_mask.mif -datatype bit') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain') + ' T1_biascorr_brain.mif') file.delTemporary('T1.anat') # Step 7: Generate target images for T1->DWI registration run.command('dwiextract dwi.mif -bzero - | ' 'mrcalc - 0.0 -max - | ' 'mrmath - mean -axis 3 dwi_meanbzero.mif') run.command( 'mrcalc 1 dwi_meanbzero.mif -div dwi_mask.mif -mult - | ' 'mrhistmatch - T1_biascorr_brain.mif dwi_pseudoT1.mif -mask_input dwi_mask.mif -mask_target T1_mask.mif' ) run.command( 'mrcalc 1 T1_biascorr_brain.mif -div T1_mask.mif -mult - | ' 'mrhistmatch - dwi_meanbzero.mif T1_pseudobzero.mif -mask_input T1_mask.mif -mask_target dwi_mask.mif' ) # Step 8: Perform T1->DWI registration # Note that two registrations are performed: Even though we have a symmetric registration, # generation of the two histogram-matched images means that you will get slightly different # answers depending on which synthesized image & original image you use. run.command( 'mrregister T1_biascorr_brain.mif dwi_pseudoT1.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_T1_to_pseudoT1.txt' ) file.delTemporary('T1_biascorr_brain.mif') run.command( 'mrregister T1_pseudobzero.mif dwi_meanbzero.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_pseudobzero_to_bzero.txt' ) file.delTemporary('dwi_meanbzero.mif') run.command( 'transformcalc rigid_T1_to_pseudoT1.txt rigid_pseudobzero_to_bzero.txt average rigid_T1_to_dwi.txt' ) file.delTemporary('rigid_T1_to_pseudoT1.txt') file.delTemporary('rigid_pseudobzero_to_bzero.txt') run.command( 'mrtransform T1.mif T1_registered.mif -linear rigid_T1_to_dwi.txt') file.delTemporary('T1.mif') # Note: Since we're using a mask from fsl_anat (which crops the FoV), but using it as input to 5ttge fsl # (which is receiving the raw T1), we need to resample in order to have the same dimensions between these two run.command( 'mrtransform T1_mask.mif T1_mask_registered.mif -linear rigid_T1_to_dwi.txt -template T1_registered.mif -interp nearest' ) file.delTemporary('T1_mask.mif') # Step 9: Generate 5TT image for ACT run.command( '5ttgen fsl T1_registered.mif 5TT.mif -mask T1_mask_registered.mif') file.delTemporary('T1_mask_registered.mif') # Step 10: Estimate response functions for spherical deconvolution run.command( 'dwi2response dhollander dwi.mif response_wm.txt response_gm.txt response_csf.txt -mask dwi_mask.mif' ) # Step 11: Determine whether we are working with single-shell or multi-shell data shells = [ int(round(float(value))) for value in image.mrinfo('dwi.mif', 'shellvalues').strip().split() ] multishell = (len(shells) > 2) # Step 12: Perform spherical deconvolution # Use a dilated mask for spherical deconvolution as a 'safety margin' - # ACT should be responsible for stopping streamlines before they reach the edge of the DWI mask run.command('maskfilter dwi_mask.mif dilate dwi_mask_dilated.mif -npass 3') if multishell: run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_gm.txt FOD_GM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0,0') file.delTemporary('FOD_GM.mif') file.delTemporary('FOD_CSF.mif') else: # Still use the msmt_csd algorithm with single-shell data: Use hard non-negativity constraint # Also incorporate the CSF response to provide some fluid attenuation run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0') file.delTemporary('FOD_CSF.mif') # Step 13: Generate the grey matter parcellation # The necessary steps here will vary significantly depending on the parcellation scheme selected run.command( 'mrconvert T1_registered.mif T1_registered.nii -stride +1,+2,+3') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': # Run FreeSurfer pipeline on this subject's T1 image run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -i T1_registered.nii') run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -all') # Grab the relevant parcellation image and target lookup table for conversion parc_image_path = os.path.join('freesurfer', 'mri') if app.args.parcellation == 'fs_2005': parc_image_path = os.path.join(parc_image_path, 'aparc+aseg.mgz') else: parc_image_path = os.path.join(parc_image_path, 'aparc.a2009s+aseg.mgz') # Perform the index conversion run.command('labelconvert ' + parc_image_path + ' ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc_init.mif') if app.cleanup: run.function(shutil.rmtree, 'freesurfer') # Fix the sub-cortical grey matter parcellations using FSL FIRST run.command('labelsgmfix parc_init.mif T1_registered.mif ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('parc_init.mif') elif app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': # Can use MNI152 image provided with FSL for registration run.command(flirt_cmd + ' -ref ' + mni152_path + ' -in T1_registered.nii -omat T1_to_MNI_FLIRT.mat -dof 12') run.command('transformconvert T1_to_MNI_FLIRT.mat T1_registered.nii ' + mni152_path + ' flirt_import T1_to_MNI_MRtrix.mat') file.delTemporary('T1_to_MNI_FLIRT.mat') run.command( 'transformcalc T1_to_MNI_MRtrix.mat invert MNI_to_T1_MRtrix.mat') file.delTemporary('T1_to_MNI_MRtrix.mat') run.command('mrtransform ' + parc_image_path + ' AAL.mif -linear MNI_to_T1_MRtrix.mat ' '-template T1_registered.mif -interp nearest') file.delTemporary('MNI_to_T1_MRtrix.mat') run.command('labelconvert AAL.mif ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('AAL.mif') else: app.error('Unknown parcellation scheme requested: ' + app.args.parcellation) file.delTemporary('T1_registered.nii') # Step 14: Generate the tractogram # If not manually specified, determine the appropriate number of streamlines based on the number of nodes in the parcellation: # mean edge weight of 1,000 streamlines # A smaller FOD amplitude threshold of 0.06 (default 0.1) is used for tracking due to the use of the msmt_csd # algorithm, which imposes a hard rather than soft non-negativity constraint num_nodes = int(image.statistic('parc.mif', 'max')) num_streamlines = 1000 * num_nodes * num_nodes if app.args.streamlines: num_streamlines = app.args.streamlines run.command( 'tckgen FOD_WM.mif tractogram.tck -act 5TT.mif -backtrack -crop_at_gmwmi -cutoff 0.06 -maxlength 250 -power 0.33 ' '-select ' + str(num_streamlines) + ' -seed_dynamic FOD_WM.mif') # Step 15: Use SIFT2 to determine streamline weights fd_scale_gm_option = '' if not multishell: fd_scale_gm_option = ' -fd_scale_gm' run.command( 'tcksift2 tractogram.tck FOD_WM.mif weights.csv -act 5TT.mif -out_mu mu.txt' + fd_scale_gm_option) # Step 16: Generate a TDI (to verify that SIFT2 has worked correctly) with open('mu.txt', 'r') as f: mu = float(f.read()) run.command( 'tckmap tractogram.tck -tck_weights_in weights.csv -template FOD_WM.mif -precise - | ' 'mrcalc - ' + str(mu) + ' -mult tdi.mif') # Step 17: Generate the connectome # Only provide the standard density-weighted connectome for now run.command( 'tck2connectome tractogram.tck parc.mif connectome.csv -tck_weights_in weights.csv' ) file.delTemporary('weights.csv') # Move necessary files to output directory run.function( shutil.copy, 'connectome.csv', os.path.join(output_dir, 'connectome', label + '_connectome.csv')) run.command('mrconvert dwi.mif ' + os.path.join(output_dir, 'dwi', label + '_dwi.nii.gz') + ' -export_grad_fsl ' + os.path.join(output_dir, 'dwi', label + '_dwi.bvec') + ' ' + os.path.join(output_dir, 'dwi', label + '_dwi.bval') + ' -json_export ' + os.path.join(output_dir, 'dwi', label + '_dwi.json')) run.command('mrconvert tdi.mif ' + os.path.join(output_dir, 'dwi', label + '_tdi.nii.gz')) run.function(shutil.copy, 'mu.txt', os.path.join(output_dir, 'connectome', label + '_mu.txt')) run.function(shutil.copy, 'response_wm.txt', os.path.join(output_dir, 'dwi', label + '_response.txt')) # Manually wipe and zero the temp directory (since we might be processing more than one subject) os.chdir(cwd) if app.cleanup: app.console('Deleting temporary directory ' + app.tempDir) # Can't use run.function() here; it'll try to write to the log file that resides in the temp directory just deleted shutil.rmtree(app.tempDir) else: app.console('Contents of temporary directory kept, location: ' + app.tempDir) app.tempDir = ''