def main():
    config = get_configuration(print_diagnostics=True,
                               with_neptune=True,
                               nesting_prefixes=("net_", "env_"))
    # You can set locally e.g. POLO_SUPERVISED_OUTPUT=/tmp/supervised_output/
    output_dir = os.environ.get("POLO_SUPERVISED_OUTPUT", os.getcwd())
    print("Output directory: {}".format(output_dir))
    experiment = SupervisedExperiment(output_dir=output_dir, **config)
    experiment.run_experiment()
コード例 #2
0
def main():
    """Follows example from mrunner experiment_gin.py
    Requires BASE_PATH and GAME to be passed in config
    :return:
    """
    params = get_configuration(print_diagnostics=True, with_neptune=True, inject_parameters_to_gin=True)
    LOG_PATH = os.path.join(params.BASE_PATH, 'tests', params.GAME)
    runner = RolloutsRunner(LOG_PATH,create_rainbow_rollouts_agent)
    runner.run_experiment()
コード例 #3
0
ファイル: run.py プロジェクト: do-not-be-hasty/RL
def main():
    with_neptune = True
    if len(os.environ.get('NEPTUNE_API_TOKEN')) == 0:
        print('empty token, run without neptune', file=sys.stderr)
        with_neptune = False

    params = get_configuration(print_diagnostics=True,
                               with_neptune=with_neptune)
    np.random.seed(None)

    learn_BitFlipper_HER(10)
コード例 #4
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Too many command-line arguments.')
    if FLAGS.run_mode == 'actor':
        if not FLAGS.is_local:
            get_configuration(config_file=FLAGS.mrunner_config,
                              inject_parameters_to_FLAGS=True)
        actor.actor_loop(env.create_environment)
    elif FLAGS.run_mode == 'learner':
        if not FLAGS.is_local:
            get_configuration(config_file=FLAGS.mrunner_config,
                              print_diagnostics=True,
                              with_neptune=True,
                              inject_parameters_to_FLAGS=True)
            experiment = neptune.get_experiment()
            experiment.append_tag(tag=FLAGS.nonce)
            neptune_tensorboard.integrate_with_tensorflow()
        learner.learner_loop(env.create_environment, create_agent,
                             create_optimizer)
    elif FLAGS.run_mode == 'visualize':
        visualize.visualize(env.create_environment, create_agent,
                            create_optimizer)
    else:
        raise ValueError('Unsupported run mode {}'.format(FLAGS.run_mode))
コード例 #5
0
ファイル: dqn_scratch.py プロジェクト: do-not-be-hasty/RL
def main():
    try:
        params = get_configuration(print_diagnostics=True, with_neptune=True)
    except TypeError:
        print(' ************************************************\n',
              '                NEPTUNE DISABLED                \n',
              '************************************************')
        sleep(2)
    # env = gym.make("CartPole-v1")
    # env = gym.make("MountainCar-v0")
    # env = make_env_BitFlipper(n=5, space_seed=None)
    # env = make_env_GoalBitFlipper(n=5, space_seed=None)
    env = make_env_GoalRubik(step_limit=100, shuffles=100)
    model = HER(env)
    # model.learn(100000 * 16 * 50)
    model.learn(120000000)
コード例 #6
0
def main():
    params = get_configuration(print_diagnostics=True, with_neptune=True, inject_parameters_to_gin=True)
    LOG_PATH = os.path.join(params.BASE_PATH, 'tests', params.GAME)
    runner = RainbowBasicRunner(LOG_PATH, create_agent)
    runner.run_experiment()
コード例 #7
0
ファイル: run_example.py プロジェクト: zajaczajac/sac-tf2
import gym
from mrunner.helpers.client_helper import get_configuration

from spinup.sac import sac


def get_get_env(env_name):
    def get_env():
        return gym.make(env_name)

    return get_env


def main(task, seed, steps, replay_size, batch_size, hidden_sizes):
    sac(get_get_env(task),
        seed=seed,
        steps=steps,
        replay_size=replay_size,
        batch_size=batch_size,
        actor_kwargs=dict(hidden_sizes=hidden_sizes),
        critic_kwargs=dict(hidden_sizes=hidden_sizes))


if __name__ == '__main__':
    config = get_configuration(print_diagnostics=True, with_neptune=True)
    experiment_id = config.pop('experiment_id')

    main(**config)
コード例 #8
0
import gym
import neptune
from stable_baselines import DQN
from stable_baselines.logger import KVWriter
from stable_baselines.logger import Logger
from mrunner.helpers.client_helper import get_configuration


class NeptuneFormat(KVWriter):
    def writekvs(self, kvs):
        for key, value in sorted(kvs.items()):
            neptune.send_metric(key, value)


if __name__ == "__main__":
    params = get_configuration(with_neptune=True,
                               inject_parameters_to_gin=True)
    Logger.CURRENT = Logger(folder=None, output_formats=[NeptuneFormat()])

    # Create environment
    env = gym.make('LunarLander-v2')

    # Instantiate the agent
    model = DQN('MlpPolicy',
                env,
                learning_rate=params["learning_rate"],
                prioritized_replay=params["prioritized_replay"],
                verbose=params["verbose"])

    # Train the agent
    model.learn(total_timesteps=params["total_timesteps"],
                log_interval=params["log_interval"])