def test_updateState_PosOffsetPosArc(self): ''' Test the robot following a path starting from the same angle but with a positive offset and larger radius ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.ARC pathSeg.seg_number = 1 pathSeg.seg_length = math.pi / 2.0 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 init_quat = quaternion_from_euler(0, 0, math.pi + math.pi / 2) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 1.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 0.0 point = PointMsg() maxIter = 1000 count = 1 rhoDes = pathSeg.curvature - .3 angle = State.getYaw(pathSeg.init_tan_angle) r = 1 / abs(rhoDes) startAngle = angle - math.pi / 2.0 # extrapolate next point while (state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved dAng = pathSeg.seg_length * (count / (maxIter / 2.0)) * rhoDes arcAng = startAngle + dAng point.x = pathSeg.ref_point.x + r * math.cos(arcAng) point.y = pathSeg.ref_point.y + r * math.sin(arcAng) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_stop(self): ''' Test the stop method ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.LINE pathSeg.seg_number = 1 pathSeg.seg_length = math.sqrt(2)*2 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0,0,math.pi/4.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 0.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 1.5 point = PointMsg() maxIter = 300 count = 1 # extrapolate next point while(state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved point.x = pathSeg.seg_length*(count/(maxIter/2.0))*math.cos(math.pi/4.0) point.y = pathSeg.seg_length*(count/(maxIter/2.0))*math.sin(math.pi/4.0) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0) self.assertEquals(state.v, 0.5) self.assertEquals(state.o, 1.5) state.stop() self.assertEquals(state.v, 0.0) self.assertEquals(state.o, 0.0)
def test_updateState_NegOffsetNegArc(self): ''' Test the robot following a path starting from the same angle but with a negative offset and a smaller radius ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.ARC pathSeg.seg_number = 1 pathSeg.seg_length = math.pi/2.0 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 init_quat = quaternion_from_euler(0,0,3*math.pi/4.0-math.pi/2) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = -1.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 0.0 point = PointMsg() maxIter = 1000 count = 1 rhoDes = pathSeg.curvature + .3 angle = State.getYaw(pathSeg.init_tan_angle) r=1/abs(rhoDes) startAngle = angle + math.pi/2.0 # extrapolate next point while(state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved dAng = pathSeg.seg_length*(count/(maxIter/2.0))*rhoDes arcAng = startAngle+dAng point.x = pathSeg.ref_point.x + r*math.cos(arcAng) point.y = pathSeg.ref_point.y + r*math.sin(arcAng) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_updateState_NegOffsetNegSpin(self): ''' Test the robot following a path starting from an angle with a positive offset ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.SPIN_IN_PLACE pathSeg.seg_number = 1 pathSeg.seg_length = math.pi pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0, 0, 0.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 1.0 ref_point = PointMsg() ref_point.x = 1.0 ref_point.y = 1.0 pathSeg.ref_point = ref_point maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.0 vel_cmd.angular.z = 0.5 point = PointMsg() psi = 0.0 maxIter = 1000 count = 1 # extrapolate next point while (state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved psi = 2.0 * state.pathSeg.seg_length * count / maxIter + math.pi / 4.0 state.updateState(vel_cmd, point, psi) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_updateState_NegOffsetNegSpin(self): ''' Test the robot following a path starting from an angle with a positive offset ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.SPIN_IN_PLACE pathSeg.seg_number = 1 pathSeg.seg_length = math.pi pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0,0,0.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 1.0 ref_point = PointMsg() ref_point.x = 1.0 ref_point.y = 1.0 pathSeg.ref_point = ref_point maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.0 vel_cmd.angular.z = 0.5 point = PointMsg() psi = 0.0 maxIter = 1000 count = 1 # extrapolate next point while(state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved psi = 2.0*state.pathSeg.seg_length*count/maxIter + math.pi/4.0 state.updateState(vel_cmd, point, psi) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_updateState_NegOffsetLine(self): ''' Test the robot following a path starting with a negative offset and crossing over the path ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.LINE pathSeg.seg_number = 1 pathSeg.seg_length = math.sqrt(2) * 2 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0, 0, math.pi / 4.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 0.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 0.0 point = PointMsg() actSegLength = 2.0 * math.sqrt(2) + 1.0 maxIter = 1000 count = 1 # extrapolate next point while (state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved point.x = actSegLength * (count / (maxIter / 2.0)) * math.cos( 3 * math.pi / 4.0) + 1.0 point.y = actSegLength * (count / (maxIter / 2.0)) * math.sin( 3 * math.pi / 4.0) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_updateState_NegOffsetLine(self): ''' Test the robot following a path starting with a negative offset and crossing over the path ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.LINE pathSeg.seg_number = 1 pathSeg.seg_length = math.sqrt(2)*2 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0,0,math.pi/4.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 0.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 0.0 point = PointMsg() actSegLength = 2.0*math.sqrt(2)+1.0 maxIter = 1000 count = 1 # extrapolate next point while(state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved point.x = actSegLength*(count/(maxIter/2.0))*math.cos(3*math.pi/4.0) + 1.0 point.y = actSegLength*(count/(maxIter/2.0))*math.sin(3*math.pi/4.0) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0)
def test_stop(self): ''' Test the stop method ''' pathSeg = PathSegmentMsg() pathSeg.seg_type = pathSeg.LINE pathSeg.seg_number = 1 pathSeg.seg_length = math.sqrt(2) * 2 pathSeg.ref_point.x = 0.0 pathSeg.ref_point.y = 0.0 pathSeg.ref_point.z = 0.0 init_quat = quaternion_from_euler(0, 0, math.pi / 4.0) pathSeg.init_tan_angle.w = init_quat[3] pathSeg.init_tan_angle.x = init_quat[0] pathSeg.init_tan_angle.y = init_quat[1] pathSeg.init_tan_angle.z = init_quat[2] pathSeg.curvature = 0.0 maxSpeed = TwistMsg() maxSpeed.linear.x = 1.0 maxSpeed.angular.z = 1.0 pathSeg.max_speeds = maxSpeed minSpeed = TwistMsg() pathSeg.min_speeds = minSpeed pathSeg.accel_limit = 1.0 pathSeg.decel_limit = -1.0 state = State(pathSeg) vel_cmd = TwistMsg() vel_cmd.linear.x = 0.5 vel_cmd.angular.z = 1.5 point = PointMsg() maxIter = 300 count = 1 # extrapolate next point while (state.segDistDone < 1.0 and maxIter > count): # create where the robot should have moved point.x = pathSeg.seg_length * (count / (maxIter / 2.0)) * math.cos( math.pi / 4.0) point.y = pathSeg.seg_length * (count / (maxIter / 2.0)) * math.sin( math.pi / 4.0) state.updateState(vel_cmd, point, 0.0) count += 1 self.assertTrue(count < maxIter) self.assertTrue(state.segDistDone >= 1.0) self.assertEquals(state.v, 0.5) self.assertEquals(state.o, 1.5) state.stop() self.assertEquals(state.v, 0.0) self.assertEquals(state.o, 0.0)