コード例 #1
0
def check_face_img(face_img):
    # pose_predict(姿势): [[pitch, yaw, roll]](Pitch: 俯仰; Yaw: 摇摆; Roll: 倾斜)
    '''
    :param face_img: 人脸对应的矩阵
    :param image_id: 图片id
    :return: 是否进行识别(False:不进行识别)
    '''

    current_day = get_current_day()
    log_file = open(os.path.join(log_dir, current_day + '.txt'), 'a')

    face_img_str = base64.b64encode(msgpack_numpy.dumps(face_img))
    request = {
        "request_type": 'check_pose',
        "face_img_str": face_img_str,
        "image_id": str(time.time())
    }
    result = requests.post(angle_url, data=request)

    try:
        if result.status_code == 200:
            pose_predict = json.loads(result.content)["pose_predict"]
            if not pose_predict:  # 加载失败
                log_file.write('\t'.join(map(str, ['pose filter request'])) +
                               '\n')
                log_file.close()
                return False
            else:
                pose_predict = msgpack_numpy.loads(
                    base64.b64decode(pose_predict))
                if pose_predict == None:
                    log_file.write(
                        '\t'.join(map(str, ['pose filter detect'])) + '\n')
                    log_file.close()
                    return False
                pitch, yaw, roll = pose_predict[0]
                if math.fabs(pitch) < pitch_threshold and math.fabs(
                        yaw) < yaw_threshold and math.fabs(
                            roll) < roll_threshold:
                    log_file.write('\t'.join(
                        map(str, ['pose not filter',
                                  str(pose_predict[0])])) + '\n')
                    log_file.close()
                    return True
                else:
                    log_file.write('\t'.join(
                        map(str,
                            ['pose filter threshold',
                             str(pose_predict[0])])) + '\n')
                    log_file.close()
                    return False
        else:
            return False
    except:
        traceback.print_exc()
        log_file.close()
        return False
コード例 #2
0
def verif_all_person(all_person_file, test_person_file):
    all_person_list = open(all_person_file).read().split('\n')
    test_person_list = open(test_person_file).read().split('\n')
    for test_element in test_person_list:
        try:
            test_tmp = test_element.split('\t')
            this_similarity_list = []
            if len(test_tmp) == 2:
                test_pic_path, test_face_feature = test_tmp[0], test_tmp[1]
                test_face_feature = msgpack_numpy.loads(
                    base64.b64decode(test_face_feature))
                for all_element in all_person_list:
                    try:
                        all_tmp = all_element.split('\t')
                        if len(all_tmp) == 2:
                            all_pic_path, all_face_feature = all_tmp[
                                0], all_tmp[1]
                            all_face_feature = msgpack_numpy.loads(
                                base64.b64decode(all_face_feature))
                            similarity = cosine_similarity(
                                all_face_feature, test_face_feature)[0][0]
                            # print similarity
                            this_similarity_list.append(
                                (similarity, all_pic_path))
                        else:
                            # print 'all_tmp :', all_tmp
                            continue
                    except:
                        traceback.print_exc()
                        continue
            else:
                # print 'test_tmp :', test_tmp
                continue
        except:
            traceback.print_exc()
            continue
        this_similarity_list.sort(key=lambda x: x[0])
        # print test_tmp[0], this_similarity_list[-1][0], this_similarity_list[-1][1], \
        #     this_similarity_list[-2][0], this_similarity_list[-2][1], \
        #     this_similarity_list[-3][0], this_similarity_list[-3][1], \
        #     this_similarity_list[-4][0], this_similarity_list[-4][1]
        print test_tmp[0], this_similarity_list[-1][1]
コード例 #3
0
    def check_face_img(self, face_img, image_id):
        # 计算角度
        '''
        :param face_img: 人脸对应的矩阵
        :param image_id: 图片id
        :return: 是否进行识别(False:不进行识别)
        '''
        # 姿势检测

        current_day = get_current_day()
        log_file = open(os.path.join(log_dir, current_day + '.txt'), 'a')

        face_img_str = base64.b64encode(msgpack_numpy.dumps(face_img))
        request = {
            "request_type": 'check_pose',
            "face_img_str": face_img_str,
            "image_id": image_id,
        }
        url = "http://%s:%d/" % (check_ip, check_port)
        result = image_request(request, url)
        try:
            pose_predict = json.loads(result)["pose_predict"]
            if not pose_predict:  # 加载失败
                log_file.write(
                    '\t'.join(map(str, [image_id, 'pose filter request'])) +
                    '\n')
                log_file.close()
                return False
            else:
                pose_predict = msgpack_numpy.loads(
                    base64.b64decode(pose_predict))
                if pose_predict == None:
                    log_file.write(
                        '\t'.join(map(str, [image_id, 'pose filter detect'])) +
                        '\n')
                    log_file.close()
                    return False
                pitch, yaw, roll = pose_predict[0]
                if math.fabs(pitch) < self.pitch_threshold and \
                        math.fabs(yaw) < self.yaw_threshold and \
                        math.fabs(roll) < self.roll_threshold:
                    log_file.close()
                    return True
                else:
                    log_file.write('\t'.join(
                        map(str, [image_id, 'pose filter threshold'])) + '\n')
                    log_file.close()
                    return False
        except:
            traceback.print_exc()
            log_file.close()
            return False
コード例 #4
0
def load_from_bytes(buf):
    """
    Args:
        buf: the output of `dumps`.
    """
    # Since 0.6, the default max size was set to 1MB.
    # We change it to approximately 1G.
    return msgpack_numpy.loads(buf,
                               raw=False,
                               max_bin_len=MAX_MSGPACK_LEN,
                               max_array_len=MAX_MSGPACK_LEN,
                               max_map_len=MAX_MSGPACK_LEN,
                               max_str_len=MAX_MSGPACK_LEN)
コード例 #5
0
def cal_sim():
    sim_file = 'test_cluster.txt'
    all_content = open(sim_file, 'r').read().split('\n')
    error_num = 0
    all_num = 0
    del_num = 0
    del_list = []
    last_index = 1
    id_feature_dic = {}
    error_id = []
    for content in all_content:
        try:
            id, feature = content.split('\t')
            id_feature_dic[id] = msgpack_numpy.loads(base64.b64decode(feature))
        except:
            error_id.append(id)
            continue
    # pdb.set_trace()
    for index in range(2, len(all_content)):
        try:
            last_id, last_feature = all_content[last_index].split('\t')
            this_id, this_feature = all_content[index].split('\t')
            this_feature = msgpack_numpy.loads(base64.b64decode(this_feature))
            last_feature = msgpack_numpy.loads(base64.b64decode(last_feature))
            if this_feature.size == 256 and last_feature.size == 256:
                cos_sim = pairwise.cosine_similarity(this_feature,
                                                     last_feature)[0][0]
                all_num += 1
                if cos_sim > 0.85:
                    del_num += 1
                    del_list.append(this_id)
                    print this_id, last_id, last_index, cos_sim
                else:
                    last_index = index
        except:
            error_num += 1
            continue
    return del_list
コード例 #6
0
def cal_sim():
    sim_file = 'test_cluster.txt'
    all_content = open(sim_file, 'r').read().split('\n')
    error_num = 0
    all_num = 0
    del_num = 0
    del_list = []
    last_index = 1
    id_feature_dic = {}
    error_id = []
    for content in all_content:
        try:
            id, feature = content.split('\t')
            id_feature_dic[id] = msgpack_numpy.loads(base64.b64decode(feature))
        except:
            error_id.append(id)
            continue
    # pdb.set_trace()
    for index in range(2, len(all_content)):
        try:
            last_id, last_feature = all_content[last_index].split('\t')
            this_id, this_feature = all_content[index].split('\t')
            this_feature = msgpack_numpy.loads(base64.b64decode(this_feature))
            last_feature = msgpack_numpy.loads(base64.b64decode(last_feature))
            if this_feature.size == 256 and last_feature.size == 256:
                cos_sim = pairwise.cosine_similarity(this_feature, last_feature)[0][0]
                all_num += 1
                if cos_sim > 0.85:
                    del_num += 1
                    del_list.append(this_id)
                    print this_id, last_id, last_index, cos_sim
                else:
                    last_index = index
        except:
            error_num += 1
            continue
    return del_list
コード例 #7
0
def verif_all_person(all_person_file, test_person_file):
    all_person_list = open(all_person_file).read().split('\n')
    test_person_list = open(test_person_file).read().split('\n')
    for test_element in test_person_list:
        try:
            test_tmp = test_element.split('\t')
            this_similarity_list = []
            if len(test_tmp) == 2:
                test_pic_path, test_face_feature = test_tmp[0], test_tmp[1]
                test_face_feature = msgpack_numpy.loads(base64.b64decode(test_face_feature))
                for all_element in all_person_list:
                    try:
                        all_tmp = all_element.split('\t')
                        if len(all_tmp) == 2:
                            all_pic_path, all_face_feature = all_tmp[0], all_tmp[1]
                            all_face_feature = msgpack_numpy.loads(base64.b64decode(all_face_feature))
                            similarity = cosine_similarity(all_face_feature, test_face_feature)[0][0]
                            # print similarity
                            this_similarity_list.append((similarity, all_pic_path))
                        else:
                            # print 'all_tmp :', all_tmp
                            continue
                    except:
                        traceback.print_exc()
                        continue
            else:
                # print 'test_tmp :', test_tmp
                continue
        except:
            traceback.print_exc()
            continue
        this_similarity_list.sort(key=lambda x:x[0])
        # print test_tmp[0], this_similarity_list[-1][0], this_similarity_list[-1][1], \
        #     this_similarity_list[-2][0], this_similarity_list[-2][1], \
        #     this_similarity_list[-3][0], this_similarity_list[-3][1], \
        #     this_similarity_list[-4][0], this_similarity_list[-4][1]
        print test_tmp[0], this_similarity_list[-1][1]
コード例 #8
0
    def segment_spectra_chunk(obj, id, ibm_cos):
        print(f'Segmenting spectra chunk {obj.key}')
        sp_mz_int_buf = msgpack.loads(obj.data_stream.read())

        def _first_level_segment_upload(segm_i):
            l = ds_segments_bounds[segm_i][0, 0]
            r = ds_segments_bounds[segm_i][-1, 1]
            segm_start, segm_end = np.searchsorted(sp_mz_int_buf[:, 1], (l, r))  # mz expected to be in column 1
            segm = sp_mz_int_buf[segm_start:segm_end]
            ibm_cos.put_object(Bucket=bucket,
                               Key=f'{ds_segments_prefix}/chunk/{segm_i}/{id}.msgpack',
                               Body=msgpack.dumps(segm))

        with ThreadPoolExecutor(max_workers=128) as pool:
            pool.map(_first_level_segment_upload, range(len(ds_segments_bounds)))
コード例 #9
0
 def post(self):
     request_type = self.get_body_argument('request_type')
     if request_type == 'check_pose':
         try:
             image_id = self.get_body_argument("image_id")
             face_img_str = self.get_body_argument("face_img_str")
             print "receive image", image_id, time.time()
             face_img = msgpack_numpy.loads(base64.b64decode(face_img_str))
             start = time.time()
             pose_predict = angle_calculate_server.calculate_angle(face_img, image_id)
             end = time.time()
             pose_predict = base64.b64encode(msgpack_numpy.dumps(pose_predict))
             print 'pose predict time :', (end - start)
             self.write(json.dumps({"pose_predict": pose_predict}))
         except:
             traceback.print_exc()
             return
コード例 #10
0
def load_data(result_file, pack_file):
    person_feature_dic = {} # {person_name:[(pic_name, pic_feature),...,(pic_name, pic_feature)]}
    for line in open(result_file):
        tmp = line.rstrip().split('\t')
        if len(tmp) == 2:
            try:
                pic_path = tmp[0].split('/')
                person_name = pic_path[-2]
                pic_name = pic_path[-1]
                feature = msgpack_numpy.loads(base64.b64decode(tmp[1]))
                feature_list = person_feature_dic.get(person_name, [])
                feature_list.append((pic_name, feature))
                person_feature_dic[person_name] = feature_list
            except:
                print tmp
                continue
    msgpack_numpy.dump(person_feature_dic, open(pack_file, 'wb'))
コード例 #11
0
    def check_face_img(self, face_img, image_id):
        # 计算角度
        '''
        :param face_img: 人脸对应的矩阵
        :param image_id: 图片id
        :return: 是否进行识别(False:不进行识别)
        '''
        # 姿势检测

        current_day = get_current_day()
        log_file = open(os.path.join(log_dir, current_day+'.txt'), 'a')

        face_img_str = base64.b64encode(msgpack_numpy.dumps(face_img))
        request = {
            "request_type": 'check_pose',
            "face_img_str": face_img_str,
            "image_id": image_id,
        }
        url = "http://%s:%d/" % (check_ip, check_port)
        result = image_request(request, url)
        try:
            pose_predict = json.loads(result)["pose_predict"]
            if not pose_predict:  # 加载失败
                log_file.write('\t'.join(map(str, [image_id, 'pose filter request'])) + '\n')
                log_file.close()
                return False
            else:
                pose_predict = msgpack_numpy.loads(base64.b64decode(pose_predict))
                if pose_predict == None:
                    log_file.write('\t'.join(map(str, [image_id, 'pose filter detect'])) + '\n')
                    log_file.close()
                    return False
                pitch, yaw, roll = pose_predict[0]
                if math.fabs(pitch) < self.pitch_threshold and \
                        math.fabs(yaw) < self.yaw_threshold and \
                        math.fabs(roll) < self.roll_threshold:
                    log_file.close()
                    return True
                else:
                    log_file.write('\t'.join(map(str, [image_id, 'pose filter threshold'])) + '\n')
                    log_file.close()
                    return False
        except:
            traceback.print_exc()
            log_file.close()
            return False
コード例 #12
0
 def post(self):
     request_type = self.get_body_argument('request_type')
     if request_type == 'check_pose':
         try:
             image_id = self.get_body_argument("image_id")
             face_img_str = self.get_body_argument("face_img_str")
             print "receive image", image_id, time.time()
             face_img = msgpack_numpy.loads(base64.b64decode(face_img_str))
             start = time.time()
             pose_predict = angle_calculate_server.calculate_angle(
                 face_img, image_id)
             end = time.time()
             pose_predict = base64.b64encode(
                 msgpack_numpy.dumps(pose_predict))
             print 'pose predict time :', (end - start)
             self.write(json.dumps({"pose_predict": pose_predict}))
         except:
             traceback.print_exc()
             return
コード例 #13
0
def check_face_img(face_img):
    # pose_predict(姿势): [[pitch, yaw, roll]](Pitch: 俯仰; Yaw: 摇摆; Roll: 倾斜)
    '''
    :param face_img: 人脸对应的矩阵
    :param image_id: 图片id
    :return: 是否进行识别(False:不进行识别)
    '''

    current_day = get_current_day()
    log_file = open(os.path.join(log_dir, current_day + '.txt'), 'a')

    face_img_str = base64.b64encode(msgpack_numpy.dumps(face_img))
    request = {"request_type": 'check_pose', "face_img_str": face_img_str, "image_id": str(time.time())}
    result = requests.post(angle_url, data=request)

    try:
        if result.status_code == 200:
            pose_predict = json.loads(result.content)["pose_predict"]
            if not pose_predict:  # 加载失败
                log_file.write('\t'.join(map(str, ['pose filter request'])) + '\n')
                log_file.close()
                return False
            else:
                pose_predict = msgpack_numpy.loads(base64.b64decode(pose_predict))
                if pose_predict == None:
                    log_file.write('\t'.join(map(str, ['pose filter detect'])) + '\n')
                    log_file.close()
                    return False
                pitch, yaw, roll = pose_predict[0]
                if math.fabs(pitch) < pitch_threshold and math.fabs(yaw) < yaw_threshold and math.fabs(roll) < roll_threshold:
                    log_file.write('\t'.join(map(str, ['pose not filter', str(pose_predict[0])])) + '\n')
                    log_file.close()
                    return True
                else:
                    log_file.write('\t'.join(map(str, ['pose filter threshold', str(pose_predict[0])])) + '\n')
                    log_file.close()
                    return False
        else:
            return False
    except:
        traceback.print_exc()
        log_file.close()
        return False
コード例 #14
0
 def add_all_new_pic(self):
     '''
         遍历数据库(将修改过的数据加入LSHForest)
         一分钟一次(避免频繁查数据库, 也不会造成太大的延迟)
         使用研究院的模型时, 只能先保存特征, 直接移动特征(在数据库中加一列)
     '''
     current_day = get_current_day()
     log_file = open(os.path.join(self.log_dir, current_day + '.txt'), 'a')
     start = time.time()
     add_num = 0
     all_new_pic_name = get_all_new_face()
     for feature_str, person_name in all_new_pic_name:
         face_feature = np.reshape(msgpack_numpy.loads(base64.b64decode(feature_str)), (1, self.feature_dim))
         self.add_one_pic(face_feature, person_name)
         add_num += 1
     if add_num > 0:
         end = time.time()
         current_time = get_current_time()
         log_file.write('\t'.join(map(str, [current_time, 'add_pic_num :', add_num, 'Dynamic_increase_time :', (end - start)])) + '\n')
         log_file.close()
     else:
         log_file.close()
コード例 #15
0
ファイル: listeners.py プロジェクト: ddale/pymeasure
 def receive(self, flags=0):
     topic, raw_data = self.subscriber.recv_multipart(flags=flags)
     return topic.decode(), loads(raw_data, encoding='utf-8')
コード例 #16
0
ファイル: listeners.py プロジェクト: ddale/pymeasure
 def receive(self, flags=0):
     topic, raw_data = self.subscriber.recv_multipart(flags=flags)
     return topic.decode(), loads(raw_data, encoding='utf-8')
コード例 #17
0
        "face_img_str": face_img_str,
        "image_id": image_id,
    }

    requestPOST = urllib2.Request(data=urllib.urlencode(request),
                                  url="http://10.160.164.26:%d/" % check_port)
    requestPOST.get_method = lambda: "POST"
    try:
        s = urllib2.urlopen(requestPOST).read()
    except urllib2.HTTPError, e:
        print e.code
    except urllib2.URLError, e:
        print str(e)
    try:
        pose_predict = json.loads(s)["pose_predict"]
        if not pose_predict:  # 加载失败
            print image_id, 'pose filter'
            return False
        else:
            pose_predict = msgpack_numpy.loads(base64.b64decode(pose_predict))
            print pose_predict
            return True
    except:
        traceback.print_exc()
        return False


if __name__ == '__main__':
    face_img = cv2.imread('xiejunping1468293619.94.png_face_0.jpg')
    valid_one_pic_pose(face_img, 'test')
コード例 #18
0
    }

    requestPOST = urllib2.Request(
        data=urllib.urlencode(request),
        url="http://10.160.164.26:%d/" % check_port
    )
    requestPOST.get_method = lambda: "POST"
    try:
        s = urllib2.urlopen(requestPOST).read()
    except urllib2.HTTPError, e:
        print e.code
    except urllib2.URLError, e:
        print str(e)
    try:
        pose_predict = json.loads(s)["pose_predict"]
        if not pose_predict:  # 加载失败
            print image_id, 'pose filter'
            return False
        else:
            pose_predict = msgpack_numpy.loads(base64.b64decode(pose_predict))
            print pose_predict
            return True
    except:
        traceback.print_exc()
        return False


if __name__ == '__main__':
    face_img = cv2.imread('xiejunping1468293619.94.png_face_0.jpg')
    valid_one_pic_pose(face_img, 'test')