def load_metadata(traj_dir, top): """ Loads metadata of features and saves them. :param traj_dir: directory containing trajectories :param top: topology file name :return: metadata data frame """ re_pattern = '(\w+)-([0-9]{3})k-([0-9])atm-prod([0-9]+\.[0-9]+).*BT([0-9]+)*' captured_group_names = [ 'PDB', 'Temp', 'Pressure', 'Prod_Round', 'Act_Site' ] captured_group_transforms = [identity, float, float, identity, int] time_step = 1 # in picoseconds file_type = 'dcd' parser = GenericParser(re_pattern, group_names=captured_group_names, group_transforms=captured_group_transforms, top_fn=top, step_ps=time_step) meta = gather_metadata(os.path.join(traj_dir, "*.{}".format(file_type)), parser) save_meta(meta) return meta
"""Find trajectories and associated metadata msmbuilder autogenerated template version 2 created 2017-05-30T15:16:59.066163 please cite msmbuilder in any publications """ from msmbuilder.io import gather_metadata, save_meta, NumberedRunsParser ## Construct and save the dataframe parser = NumberedRunsParser( traj_fmt="trajectory-{run}.xtc", top_fn="top.pdb", step_ps=50, ) meta = gather_metadata("trajs/*.xtc", parser) save_meta(meta)
"""Find trajectories and associated metadata {{header}} Meta ---- depends: - trajs - top.pdb """ from msmbuilder.io import gather_metadata, save_meta, NumberedRunsParser ## Construct and save the dataframe parser = NumberedRunsParser( traj_fmt="trajectory-{run}.xtc", top_fn="top.pdb", step_ps=50, ) meta = gather_metadata("trajs/*.xtc", parser) save_meta(meta)