コード例 #1
0
def __initX(C):
    """
    Computes an initial guess for a reversible correlation matrix
    """
    from msmtools.estimation import tmatrix
    from msmtools.analysis import statdist

    T = tmatrix(C)
    mu = statdist(T)
    Corr = np.dot(np.diag(mu), T)
    return 0.5 * (Corr + Corr.T)
コード例 #2
0
ファイル: _tmatrix_disconnected.py プロジェクト: yarden/bhmm
def stationary_distribution(C, P):
    # import emma
    import msmtools.estimation as msmest
    import msmtools.analysis as msmana
    # disconnected sets
    n = np.shape(C)[0]
    ctot = np.sum(C)
    pi = np.zeros((n))
    # treat each connected set separately
    S = msmest.connected_sets(C)
    for s in S:
        # compute weight
        w = np.sum(C[s,:]) / ctot
        pi[s] = w * msmana.statdist(P[s,:][:,s])
    # reinforce normalization
    pi /= np.sum(pi)
    return pi
コード例 #3
0
    def setUp(self):
        P = np.array([[0.8, 0.15, 0.05, 0.0,
                       0.0], [0.1, 0.75, 0.05, 0.05, 0.05],
                      [0.05, 0.1, 0.8, 0.0, 0.05], [0.0, 0.2, 0.0, 0.8, 0.0],
                      [0.0, 0.02, 0.02, 0.0, 0.96]])
        P = csr_matrix(P)
        A = [0]
        B = [4]
        mu = statdist(P)
        qminus = committor(P, A, B, forward=False, mu=mu)
        qplus = committor(P, A, B, forward=True, mu=mu)
        self.A = A
        self.B = B
        self.F = flux_matrix(P, mu, qminus, qplus, netflux=True)

        self.paths = [
            np.array([0, 1, 4]),
            np.array([0, 2, 4]),
            np.array([0, 1, 2, 4])
        ]
        self.capacities = [
            0.0072033898305084252, 0.0030871670702178975,
            0.00051452784503631509
        ]
コード例 #4
0
ファイル: test_tpt.py プロジェクト: hackyhacker/PyERNA
    def setUp(self):
        # 5-state toy system
        self.P = np.array([[0.8, 0.15, 0.05, 0.0, 0.0],
                           [0.1, 0.75, 0.05, 0.05, 0.05],
                           [0.05, 0.1, 0.8, 0.0, 0.05],
                           [0.0, 0.2, 0.0, 0.8, 0.0],
                           [0.0, 0.02, 0.02, 0.0, 0.96]])
        self.A = [0]
        self.B = [4]
        self.I = [1, 2, 3]

        # REFERENCE SOLUTION FOR PATH DECOMP
        self.ref_committor = np.array([0., 0.35714286, 0.42857143, 0.35714286, 1.])
        self.ref_backwardcommittor = np.array([1., 0.65384615, 0.53125, 0.65384615, 0.])
        self.ref_grossflux = np.array([[0., 0.00771792, 0.00308717, 0., 0.],
                                       [0., 0., 0.00308717, 0.00257264, 0.00720339],
                                       [0., 0.00257264, 0., 0., 0.00360169],
                                       [0., 0.00257264, 0., 0., 0.],
                                       [0., 0., 0., 0., 0.]])
        self.ref_netflux = np.array([[0.00000000e+00, 7.71791768e-03, 3.08716707e-03, 0.00000000e+00, 0.00000000e+00],
                                     [0.00000000e+00, 0.00000000e+00, 5.14527845e-04, 0.00000000e+00, 7.20338983e-03],
                                     [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 3.60169492e-03],
                                     [0.00000000e+00, 4.33680869e-19, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
                                     [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]])
        self.ref_totalflux = 0.0108050847458
        self.ref_kAB = 0.0272727272727
        self.ref_mfptAB = 36.6666666667

        self.ref_paths = [[0, 1, 4], [0, 2, 4], [0, 1, 2, 4]]
        self.ref_pathfluxes = np.array([0.00720338983051, 0.00308716707022, 0.000514527845036])

        self.ref_paths_99percent = [[0, 1, 4], [0, 2, 4]]
        self.ref_pathfluxes_99percent = np.array([0.00720338983051, 0.00308716707022])
        self.ref_majorflux_99percent = np.array([[0., 0.00720339, 0.00308717, 0., 0.],
                                                 [0., 0., 0., 0., 0.00720339],
                                                 [0., 0., 0., 0., 0.00308717],
                                                 [0., 0., 0., 0., 0.],
                                                 [0., 0., 0., 0., 0.]])

        msmobj = markov_model(self.P)
        msmobj.mu = msmana.statdist(self.P)
        msmobj.estimated = True
        msmobj1 = msmobj

        # Testing:
        # self.tpt1 = tpt(self.P, self.A, self.B)
        self.tpt1 = tpt(msmobj1, self.A, self.B)

        # 16-state toy system
        P2_nonrev = np.array([[0.5, 0.2, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.2, 0.5, 0.1, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.1, 0.5, 0.2, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.0, 0.1, 0.5, 0.0, 0.0, 0.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.3, 0.0, 0.0, 0.0, 0.5, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.1, 0.0, 0.0, 0.2, 0.5, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.0, 0.1, 0.0, 0.0, 0.1, 0.5, 0.2, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.3, 0.5, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.5, 0.1, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.2, 0.5, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.1, 0.5, 0.1, 0.0, 0.0, 0.2, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.2, 0.5, 0.0, 0.0, 0.0, 0.2],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.0, 0.5, 0.2, 0.0, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0, 0.3, 0.5, 0.1, 0.0],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.1, 0.5, 0.2],
                              [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, 0.0, 0.2, 0.5]])
        pstat2_nonrev = msmana.statdist(P2_nonrev)
        # make reversible
        C = np.dot(np.diag(pstat2_nonrev), P2_nonrev)
        Csym = C + C.T
        self.P2 = Csym / np.sum(Csym, axis=1)[:, np.newaxis]
        pstat2 = msmana.statdist(self.P2)
        self.A2 = [0, 4]
        self.B2 = [11, 15]
        self.coarsesets2 = [[2, 3, 6, 7], [10, 11, 14, 15], [0, 1, 4, 5], [8, 9, 12, 13], ]

        # REFERENCE SOLUTION CG
        self.ref2_tpt_sets = [set([0, 4]), set([2, 3, 6, 7]), set([10, 14]), set([1, 5]), set([8, 9, 12, 13]),
                              set([11, 15])]
        self.ref2_cgA = [0]
        self.ref2_cgI = [1, 2, 3, 4]
        self.ref2_cgB = [5]
        self.ref2_cgpstat = np.array([0.15995388, 0.18360442, 0.12990937, 0.11002342, 0.31928127, 0.09722765])
        self.ref2_cgcommittor = np.array([0., 0.56060272, 0.73052426, 0.19770537, 0.36514272, 1.])
        self.ref2_cgbackwardcommittor = np.array([1., 0.43939728, 0.26947574, 0.80229463, 0.63485728, 0.])
        self.ref2_cggrossflux = np.array([[0., 0., 0., 0.00427986, 0.00282259, 0.],
                                          [0., 0, 0.00234578, 0.00104307, 0., 0.00201899],
                                          [0., 0.00113892, 0, 0., 0.00142583, 0.00508346],
                                          [0., 0.00426892, 0., 0, 0.00190226, 0.],
                                          [0., 0., 0.00530243, 0.00084825, 0, 0.],
                                          [0., 0., 0., 0., 0., 0.]])
        self.ref2_cgnetflux = np.array([[0., 0., 0., 0.00427986, 0.00282259, 0.],
                                        [0., 0., 0.00120686, 0., 0., 0.00201899],
                                        [0., 0., 0., 0., 0., 0.00508346],
                                        [0., 0.00322585, 0., 0., 0.00105401, 0.],
                                        [0., 0., 0.0038766, 0., 0., 0.],
                                        [0., 0., 0., 0., 0., 0.]])

        """Dummy dtraj to trick trick constructor of MSM"""
        dtraj = [0, 0]
        tau = 1

        msmobj = markov_model(self.P2)
        msmobj.mu = msmana.statdist(self.P2)
        msmobj.estimated = True
        msmobj2 = msmobj

        # Testing
        self.tpt2 = tpt(msmobj2, self.A2, self.B2)
コード例 #5
0
    def test_mle_trev_given_pi(self):
        C = np.loadtxt(testpath + 'C_1_lag.dat')
        pi = np.loadtxt(testpath + 'pi.dat')

        T_impl_algo_dense_type_dense = impl_dense(C, pi)
        T_impl_algo_sparse_type_sparse = impl_sparse(
            scipy.sparse.csr_matrix(C), pi).toarray()
        T_Frank = impl_dense_Frank(C, pi)
        T_api_algo_dense_type_dense = apicall(C,
                                              reversible=True,
                                              mu=pi,
                                              method='dense')
        T_api_algo_sparse_type_dense = apicall(C,
                                               reversible=True,
                                               mu=pi,
                                               method='sparse')
        T_api_algo_dense_type_sparse = apicall(scipy.sparse.csr_matrix(C),
                                               reversible=True,
                                               mu=pi,
                                               method='dense').toarray()
        T_api_algo_sparse_type_sparse = apicall(scipy.sparse.csr_matrix(C),
                                                reversible=True,
                                                mu=pi,
                                                method='sparse').toarray()
        T_api_algo_auto_type_dense = apicall(C,
                                             reversible=True,
                                             mu=pi,
                                             method='auto')
        T_api_algo_auto_type_sparse = apicall(scipy.sparse.csr_matrix(C),
                                              reversible=True,
                                              mu=pi,
                                              method='auto').toarray()

        assert_allclose(T_impl_algo_dense_type_dense, T_Frank)
        assert_allclose(T_impl_algo_sparse_type_sparse, T_Frank)
        assert_allclose(T_api_algo_dense_type_dense, T_Frank)
        assert_allclose(T_api_algo_sparse_type_dense, T_Frank)
        assert_allclose(T_api_algo_dense_type_sparse, T_Frank)
        assert_allclose(T_api_algo_sparse_type_sparse, T_Frank)
        assert_allclose(T_api_algo_auto_type_dense, T_Frank)
        assert_allclose(T_api_algo_auto_type_sparse, T_Frank)

        assert is_transition_matrix(T_Frank)
        assert is_transition_matrix(T_impl_algo_dense_type_dense)
        assert is_transition_matrix(T_impl_algo_sparse_type_sparse)
        assert is_transition_matrix(T_api_algo_dense_type_dense)
        assert is_transition_matrix(T_api_algo_sparse_type_dense)
        assert is_transition_matrix(T_api_algo_dense_type_sparse)
        assert is_transition_matrix(T_api_algo_sparse_type_sparse)
        assert is_transition_matrix(T_api_algo_auto_type_dense)
        assert is_transition_matrix(T_api_algo_auto_type_sparse)

        assert_allclose(statdist(T_Frank), pi)
        assert_allclose(statdist(T_impl_algo_dense_type_dense), pi)
        assert_allclose(statdist(T_impl_algo_sparse_type_sparse), pi)
        assert_allclose(statdist(T_api_algo_dense_type_dense), pi)
        assert_allclose(statdist(T_api_algo_sparse_type_dense), pi)
        assert_allclose(statdist(T_api_algo_dense_type_sparse), pi)
        assert_allclose(statdist(T_api_algo_sparse_type_sparse), pi)
        assert_allclose(statdist(T_api_algo_auto_type_dense), pi)
        assert_allclose(statdist(T_api_algo_auto_type_sparse), pi)
コード例 #6
0
ファイル: pcca.py プロジェクト: clonker/scikit-time
def pcca(P, m, stationary_distribution=None):
    """PCCA+ spectral clustering method with optimized memberships.

    Implementation according to [1]_.
    Clusters the first m eigenvectors of a transition matrix in order to cluster the states.
    This function does not assume that the transition matrix is fully connected. Disconnected sets
    will automatically define the first metastable states, with perfect membership assignments.

    Parameters
    ----------
    P : ndarray (n,n)
        Transition matrix.

    m : int
        Number of clusters to group to.

    stationary_distribution : ndarray(n,), optional, default=None
        Stationary distribution over the full state space, can be given if already computed.

    References
    ----------
    .. [1] S. Roeblitz and M. Weber, Fuzzy spectral clustering by PCCA+:
           application to Markov state models and data classification.
           Adv Data Anal Classif 7, 147-179 (2013).
    """
    if m <= 0 or m > P.shape[0]:
        raise ValueError(
            "Number of metastable sets must be larger than 0 and can be at most as large as the number "
            "of states.")
    assert 0 < m <= P.shape[0]
    from scipy.sparse import issparse
    if issparse(P):
        warnings.warn(
            'PCCA is only implemented for dense matrices, '
            'converting sparse transition matrix to dense ndarray.',
            stacklevel=2)
        P = P.toarray()

    # stationary distribution
    if stationary_distribution is None:
        from msmtools.analysis import stationary_distribution as statdist
        pi = statdist(P)
    else:
        pi = stationary_distribution

    # memberships
    # TODO: can be improved. pcca computes stationary distribution internally, we don't need to compute it twice.
    from msmtools.analysis.dense.pcca import pcca as _algorithm_impl
    M = _algorithm_impl(P, m)

    # coarse-grained stationary distribution
    pi_coarse = np.dot(M.T, pi)

    # HMM output matrix
    B = mdot(np.diag(1.0 / pi_coarse), M.T, np.diag(pi))
    # renormalize B to make it row-stochastic
    B /= B.sum(axis=1)[:, None]

    # coarse-grained transition matrix
    W = np.linalg.inv(np.dot(M.T, M))
    A = np.dot(np.dot(M.T, P), M)
    P_coarse = np.dot(W, A)

    # symmetrize and renormalize to eliminate numerical errors
    X = np.dot(np.diag(pi_coarse), P_coarse)
    # and normalize
    P_coarse = X / X.sum(axis=1)[:, None]

    return PCCAModel(P_coarse, pi_coarse, M, B)