コード例 #1
0
    def setUp(self):
        p = np.zeros(10)
        q = np.zeros(10)
        p[0:-1] = 0.5
        q[1:] = 0.5
        p[4] = 0.01
        q[6] = 0.1

        self.A = [0, 1]
        self.B = [8, 9]
        self.a = 1
        self.b = 8

        self.bdc = BirthDeathChain(q, p)
        T_dense = self.bdc.transition_matrix()
        T_sparse = csr_matrix(T_dense)
        self.T = T_sparse

        self.mu = self.bdc.stationary_distribution()
        self.qminus = self.bdc.committor_backward(self.a, self.b)
        self.qplus = self.bdc.committor_forward(self.a, self.b)

        # present results
        self.fluxn = flux.flux_matrix(self.T,
                                      self.mu,
                                      self.qminus,
                                      self.qplus,
                                      netflux=False)
        self.netfluxn = flux.flux_matrix(self.T,
                                         self.mu,
                                         self.qminus,
                                         self.qplus,
                                         netflux=True)
        self.totalfluxn = flux.total_flux(self.netfluxn, self.A)
        self.raten = flux.rate(self.totalfluxn, self.mu, self.qminus)
コード例 #2
0
ファイル: reactive_flux.py プロジェクト: yuxuanzhuang/PyEMMA
 def set_model_params(self, A, B, flux, mu, qminus=None, qplus=None, gross_flux=None, dt_model='1 step'):
     # set data
     self._A = A
     self._B = B
     self._flux = flux
     self._mu = mu
     self._qminus = qminus
     self._qplus = qplus
     self._gross_flux = gross_flux
     self.dt_model = dt_model
     # compute derived quantities:
     self._totalflux = tptapi.total_flux(flux, A)
     self._kAB = tptapi.rate(self._totalflux, mu, qminus)
コード例 #3
0
ファイル: reactive_flux.py プロジェクト: clonker/scikit-time
    def __init__(self,
                 A,
                 B,
                 flux,
                 mu=None,
                 qminus=None,
                 qplus=None,
                 gross_flux=None,
                 physical_time='1 step'):
        r""" Constructs a new reactive flux model instance.

        Parameters
        ----------
        A : array_like
            List of integer state labels for set A
        B : array_like
            List of integer state labels for set B
        flux : (n,n) ndarray or scipy sparse matrix
            effective or net flux of A->B pathways
        mu : (n,) ndarray (optional)
            Stationary vector
        qminus : (n,) ndarray (optional)
            Backward committor for A->B reaction
        qplus : (n,) ndarray (optional)
            Forward committor for A-> B reaction
        gross_flux : (n,n) ndarray or scipy sparse matrix
            gross flux of A->B pathways, if available
        physical_time : Quantity or None, optional
            when the originating model has a lag time, output units will be scaled by it.
        """
        # set data
        super().__init__()
        self._A = A
        self._B = B
        self._flux = flux
        self._mu = mu
        self._qminus = qminus
        self._qplus = qplus
        self._gross_flux = gross_flux
        self._dt_model = Q_(physical_time)
        # compute derived quantities:
        self._totalflux = tptapi.total_flux(flux, A)
        self._kAB = tptapi.rate(self._totalflux, mu, qminus)
コード例 #4
0
ファイル: reactive_flux.py プロジェクト: greenTara/PyEMMA
 def __init__(self,
              A,
              B,
              flux,
              mu=None,
              qminus=None,
              qplus=None,
              gross_flux=None):
     # set data
     self._A = A
     self._B = B
     self._flux = flux
     self._mu = mu
     self._qminus = qminus
     self._qplus = qplus
     self._gross_flux = gross_flux
     # compute derived quantities:
     self._totalflux = tptapi.total_flux(flux, A)
     self._kAB = tptapi.rate(self._totalflux, mu, qminus)
コード例 #5
0
ファイル: reactive_flux.py プロジェクト: zzmjohn/PyEMMA
 def __init__(self,
              A,
              B,
              flux,
              mu=None,
              qminus=None,
              qplus=None,
              gross_flux=None,
              dt_model='1 step'):
     # set data
     self._A = A
     self._B = B
     self._flux = flux
     self._mu = mu
     self._qminus = qminus
     self._qplus = qplus
     self._gross_flux = gross_flux
     from pyemma.util.units import TimeUnit
     self.dt_model = dt_model
     self._timeunit_model = TimeUnit(self.dt_model)
     # compute derived quantities:
     self._totalflux = tptapi.total_flux(flux, A)
     self._kAB = tptapi.rate(self._totalflux, mu, qminus)