コード例 #1
0
ファイル: test_models.py プロジェクト: winni2k/msprime
    def test_ped_wf_recombination(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(inds,
                               parent_indices,
                               times,
                               is_sample,
                               sex=None,
                               ploidy=2)
        ts = msprime.simulate(
            sample_size=4,
            pedigree=ped,
            recombination_rate=0.1,
            model=[model, (1, "dtwf")],
        )
        tree = ts.first()
        self.assertEqual(tree.num_roots, 1)
        all_times = ts.tables.nodes.time
        ped_times = all_times[np.logical_and(all_times > 0, all_times <= t)]
        self.assertGreater(ped_times.shape[0], 0)
        self.assertTrue(np.all(ped_times == np.floor(ped_times)))
        wf_times = all_times[all_times > t]
        self.assertGreater(wf_times.shape[0], 0)
コード例 #2
0
ファイル: test_models.py プロジェクト: petrelharp/msprime
    def test_ped_wf_single_locus(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(inds,
                               parent_indices,
                               times,
                               is_sample,
                               sex=None,
                               ploidy=2)
        ts = msprime.simulate(
            sample_size=4,
            pedigree=ped,
            demographic_events=[
                msprime.SimulationModelChange(
                    t, msprime.DiscreteTimeWrightFisher(2))
            ],
            model=model,
        )
        tree = ts.first()
        self.assertEqual(tree.num_roots, 1)
        all_times = ts.tables.nodes.time
        ped_times = all_times[np.logical_and(all_times > 0, all_times <= t)]
        self.assertGreater(ped_times.shape[0], 0)
        self.assertTrue(np.all(ped_times == np.floor(ped_times)))
        wf_times = all_times[all_times > t]
        self.assertGreater(wf_times.shape[0], 0)
コード例 #3
0
ファイル: test_models.py プロジェクト: eldonb/msprime
    def test_ped_wf_single_locus(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(inds,
                               parent_indices,
                               times,
                               is_sample,
                               sex=None,
                               ploidy=2)
        ts = msprime.simulate(sample_size=4,
                              Ne=2,
                              pedigree=ped,
                              model=(model, (t, "dtwf")))
        tree = ts.first()
        assert tree.num_roots == 1
        all_times = ts.tables.nodes.time
        ped_times = all_times[np.logical_and(all_times > 0, all_times <= t)]
        assert ped_times.shape[0] > 0
        assert np.all(ped_times == np.floor(ped_times))
        wf_times = all_times[all_times > t]
        assert wf_times.shape[0] > 0
コード例 #4
0
ファイル: test_models.py プロジェクト: JereKoskela/msprime
    def test_ped_wf_recombination(self):
        inds = np.array([1, 2, 3, 4, 5, 6])
        parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                   -1]).reshape(-1, 2)
        times = np.array([0, 0, 0, 0, 1, 1])
        is_sample = np.array([1, 1, 1, 1, 0, 0])
        t = max(times)

        model = msprime.WrightFisherPedigree()
        ped = pedigrees.Pedigree(inds,
                                 parent_indices,
                                 times,
                                 is_sample,
                                 sex=None,
                                 ploidy=2)
        ts = msprime.simulate(
            sample_size=4,
            pedigree=ped,
            recombination_rate=0.1,
            model=model,
            demographic_events=[
                msprime.SimulationModelChange(time=1, model="dtwf")
            ],
        )
        tree = ts.first()
        assert tree.num_roots == 1
        all_times = ts.tables.nodes.time
        ped_times = all_times[np.logical_and(all_times > 0, all_times <= t)]
        assert ped_times.shape[0] > 0
        assert np.all(ped_times == np.floor(ped_times))
        wf_times = all_times[all_times > t]
        assert wf_times.shape[0] > 0
コード例 #5
0
    def test_wf_ped(self):
        inds = np.array([1, 2, 3, 4])
        parent_indices = np.array([2, 3, 2, 3, -1, -1, -1, -1]).reshape(-1, 2)
        times = np.array([0, 0, 1, 1])
        is_sample = np.array([1, 1, 0, 0])

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(
            inds, parent_indices, times, is_sample, sex=None, ploidy=2
        )
        ts = msprime.simulate(2, pedigree=ped, model=model)
        assert ts is not None
コード例 #6
0
 def test_simulation_models(self):
     examples = [
         msprime.StandardCoalescent(),
         msprime.SmcApproxCoalescent(),
         msprime.SmcPrimeApproxCoalescent(),
         msprime.DiscreteTimeWrightFisher(),
         msprime.WrightFisherPedigree(),
         msprime.BetaCoalescent(),
         msprime.BetaCoalescent(alpha=1, truncation_point=10),
         msprime.DiracCoalescent(),
         msprime.DiracCoalescent(psi=1234, c=56),
         msprime.SweepGenicSelection(
             position=1,
             start_frequency=0.5,
             end_frequency=0.9,
             alpha=1,
             dt=1e-4,
         ),
     ]
     self.assert_repr_round_trip(examples)
コード例 #7
0
ファイル: test_pedigree.py プロジェクト: danking/msprime
    def test_pedigree_replicates(self):
        individual = np.array([1, 2, 3, 4])
        parents = np.array([2, 3, 2, 3, -1, -1, -1, -1]).reshape(-1, 2)
        time = np.array([0, 0, 1, 1])
        is_sample = np.array([1, 1, 0, 0])

        model = msprime.WrightFisherPedigree()
        ped = msprime.Pedigree(individual,
                               parents,
                               time,
                               is_sample,
                               sex=None,
                               ploidy=2)
        replicates = msprime.simulate(2,
                                      pedigree=ped,
                                      model=model,
                                      recombination_rate=1,
                                      num_replicates=100)
        for ts in replicates:
            self.assertTrue(ts is not None)
コード例 #8
0
 def test_model_instances(self):
     models = [
         msprime.StandardCoalescent(100),
         msprime.SmcApproxCoalescent(30),
         msprime.SmcPrimeApproxCoalescent(2132),
         msprime.DiscreteTimeWrightFisher(500),
         msprime.WrightFisherPedigree(500),
         msprime.SweepGenicSelection(reference_size=500,
                                     position=0.5,
                                     start_frequency=0.1,
                                     end_frequency=0.9,
                                     alpha=0.1,
                                     dt=0.01),
         msprime.DiracCoalescent(),
         msprime.BetaCoalescent(),
     ]
     for model in models:
         new_model = msprime.model_factory(model=model)
         self.assertFalse(new_model is model)
         self.assertEqual(new_model.__dict__, model.__dict__)
コード例 #9
0
ファイル: test_models.py プロジェクト: winni2k/msprime
 def test_model_instances(self):
     models = [
         msprime.StandardCoalescent(),
         msprime.SmcApproxCoalescent(),
         msprime.SmcPrimeApproxCoalescent(),
         msprime.DiscreteTimeWrightFisher(),
         msprime.WrightFisherPedigree(),
         msprime.SweepGenicSelection(
             position=0.5,
             start_frequency=0.1,
             end_frequency=0.9,
             alpha=0.1,
             dt=0.01,
         ),
         msprime.BetaCoalescent(alpha=2),
         msprime.DiracCoalescent(psi=1, c=1),
     ]
     for model in models:
         new_model = msprime.model_factory(model=model)
         self.assertTrue(new_model is model)
         self.assertEqual(new_model.__dict__, model.__dict__)
コード例 #10
0
    def test_simple_case(self):
        # Simple test to check that the current code is still roughly working.
        # Should be replace by better tests.
        individual = np.array([1, 2, 3, 4])
        parents = np.array([-1, -1, -1, -1, 0, 1, 1, 0]).reshape(-1, 2)
        time = np.array([1, 1, 0, 0])
        is_sample = np.array([0, 0, 1, 1])

        model = msprime.WrightFisherPedigree()
        ped = pedigrees.Pedigree(individual,
                                 parents,
                                 time,
                                 is_sample,
                                 sex=None,
                                 ploidy=2)
        ts = msprime.simulate(2,
                              pedigree=ped,
                              model=model,
                              recombination_rate=1)
        table = ts.tables.individuals
        assert np.all(table[0].parents == [-1, -1])
        assert np.all(table[1].parents == [-1, -1])
コード例 #11
0
ファイル: test_models.py プロジェクト: petrelharp/msprime
 def test_reference_size_inherited(self):
     for Ne in [1, 10, 100]:
         models = [
             msprime.DiracCoalescent(psi=0.5, c=0),
             msprime.StandardCoalescent(),
             msprime.SmcApproxCoalescent(),
             msprime.SmcPrimeApproxCoalescent(),
             msprime.DiscreteTimeWrightFisher(),
             msprime.WrightFisherPedigree(),
             msprime.SweepGenicSelection(
                 position=0.5,
                 start_frequency=0.1,
                 end_frequency=0.9,
                 alpha=0.1,
                 dt=0.01,
             ),
             msprime.BetaCoalescent(alpha=2),
             msprime.DiracCoalescent(psi=1, c=1),
         ]
         for model in models:
             new_model = msprime.model_factory(model, reference_size=Ne)
             self.assertEqual(new_model.reference_size, Ne)
コード例 #12
0
ファイル: test_provenance.py プロジェクト: winni2k/msprime
 def test_pedigree(self):
     inds = np.array([1, 2, 3, 4, 5, 6])
     parent_indices = np.array([4, 5, 4, 5, 4, 5, 4, 5, -1, -1, -1,
                                -1]).reshape(-1, 2)
     times = np.array([0, 0, 0, 0, 1, 1])
     is_sample = np.array([1, 1, 1, 1, 0, 0])
     t = max(times)
     model = msprime.WrightFisherPedigree()
     ped = msprime.Pedigree(inds,
                            parent_indices,
                            times,
                            is_sample,
                            sex=None,
                            ploidy=2)
     ts = msprime.simulate(
         sample_size=4,
         pedigree=ped,
         demographic_events=[
             msprime.SimulationModelChange(
                 t, msprime.DiscreteTimeWrightFisher())
         ],
         model=model,
     )
     self.verify(ts)
コード例 #13
0
ファイル: test_models.py プロジェクト: winni2k/msprime
 def test_wf_pedigree(self):
     model = msprime.WrightFisherPedigree()
     repr_s = "WrightFisherPedigree()"
     self.assertEqual(repr(model), repr_s)
     self.assertEqual(str(model), repr_s)
コード例 #14
0
ファイル: test_models.py プロジェクト: eldonb/msprime
 def test_wf_pedigree(self):
     model = msprime.WrightFisherPedigree()
     repr_s = "WrightFisherPedigree()"
     assert repr(model) == repr_s
     assert str(model) == repr_s