def main(): parser = argparse.ArgumentParser() model_config(parser) set_config(parser) train_config(parser) args = parser.parse_args() layer_indexes = [int(x) for x in args.layers.split(",")] set_environment(args.seed) # process data data, is_single_sentence = process_data(args) data_type = DataFormat.PremiseOnly if is_single_sentence else DataFormat.PremiseAndOneHypothesis collater = Collater(gpu=args.cuda, is_train=False, data_type=data_type) batcher = DataLoader(data, batch_size=args.batch_size, collate_fn=collater.collate_fn, pin_memory=args.cuda) opt = vars(args) # load model if os.path.exists(args.checkpoint): state_dict = torch.load(args.checkpoint) config = state_dict['config'] config['dump_feature'] = True opt.update(config) else: logger.error('#' * 20) logger.error( 'Could not find the init model!\n The parameters will be initialized randomly!') logger.error('#' * 20) return num_all_batches = len(batcher) model = MTDNNModel( opt, state_dict=state_dict, num_train_step=num_all_batches) if args.cuda: model.cuda() features_dict = {} for batch_meta, batch_data in batcher: batch_meta, batch_data = Collater.patch_data(args.cuda, batch_meta, batch_data) all_encoder_layers, _ = model.extract(batch_meta, batch_data) embeddings = [all_encoder_layers[idx].detach().cpu().numpy() for idx in layer_indexes] uids = batch_meta['uids'] masks = batch_data[batch_meta['mask']].detach().cpu().numpy().tolist() for idx, uid in enumerate(uids): slen = sum(masks[idx]) features = {} for yidx, layer in enumerate(layer_indexes): features[layer] = str(embeddings[yidx][idx][:slen].tolist()) features_dict[uid] = features # save features with open(args.foutput, 'w', encoding='utf-8') as writer: for sample in data: uid = sample['uid'] tokens = sample['tokens'] feature = features_dict[uid] feature['tokens'] = tokens feature['uid'] = uid writer.write('{}\n'.format(json.dumps(feature)))
def eval_model( model, data, metric_meta, device, with_label=True, label_mapper=None, task_type=TaskType.Classification, ): predictions = [] golds = [] scores = [] ids = [] metrics = {} for (batch_info, batch_data) in tqdm(data, total=len(data)): batch_info, batch_data = Collater.patch_data(device, batch_info, batch_data) score, pred, gold = model.predict(batch_info, batch_data) scores = merge(score, scores) golds = merge(gold, golds) predictions = merge(pred, predictions) ids = merge(batch_info["uids"], ids) if task_type == TaskType.Span: predictions, golds = postprocess_qa_predictions( golds, scores, version_2_with_negative=False) elif task_type == TaskType.SpanYN: predictions, golds = postprocess_qa_predictions( golds, scores, version_2_with_negative=True) if with_label: metrics = calc_metrics(metric_meta, golds, predictions, scores, label_mapper) return metrics, predictions, scores, golds, ids
def eval_model(model, data, metric_meta, use_cuda=True, with_label=True, label_mapper=None): if use_cuda: model.cuda() predictions = [] golds = [] scores = [] ids = [] metrics = {} for batch_info, batch_data in data: batch_info, batch_data = Collater.patch_data(use_cuda, batch_info, batch_data) score, pred, gold = model.predict(batch_info, batch_data) predictions.extend(pred) golds.extend(gold) scores.extend(score) ids.extend(batch_info['uids']) if with_label: metrics = calc_metrics(metric_meta, golds, predictions, scores, label_mapper) return metrics, predictions, scores, golds, ids
def eval_model(model, data, metric_meta, device, with_label=True, label_mapper=None, task_type=TaskType.Classification): predictions = [] golds = [] scores = [] ids = [] metrics = {} for (batch_info, batch_data) in data: batch_info, batch_data = Collater.patch_data(device, batch_info, batch_data) score, pred, gold = model.predict(batch_info, batch_data) predictions.extend(pred) golds.extend(gold) scores.extend(score) ids.extend(batch_info['uids']) if task_type == TaskType.Span: from experiments.squad import squad_utils golds = squad_utils.merge_answers(ids, golds) predictions, scores = squad_utils.select_answers( ids, predictions, scores) if with_label: metrics = calc_metrics(metric_meta, golds, predictions, scores, label_mapper) return metrics, predictions, scores, golds, ids
def eval_model(model, data, metric_meta, use_cuda=True, with_label=True, label_mapper=None, task_type=TaskType.Classification): if use_cuda: model.cuda() predictions = [] golds = [] scores = [] ids = [] metrics = {} for idx, (batch_info, batch_data) in enumerate(data): # if idx % 100 == 0: # print("predicting {}".format(idx)) batch_info, batch_data = Collater.patch_data(use_cuda, batch_info, batch_data) score, pred, gold = model.predict(batch_info, batch_data) predictions.extend(pred) golds.extend(gold) scores.extend(score) ids.extend(batch_info['uids']) if task_type == TaskType.Span: from experiments.squad import squad_utils golds = squad_utils.merge_answers(ids, golds) predictions, scores = squad_utils.select_answers( ids, predictions, scores) if with_label: metrics = calc_metrics(metric_meta, golds, predictions, scores, label_mapper) return metrics, predictions, scores, golds, ids
def main(args): # load task info task_defs = TaskDefs(args.task_def) assert args.task in task_defs.task_type_map assert args.task in task_defs.data_type_map assert args.task in task_defs.metric_meta_map data_type = task_defs.data_type_map[args.task] task_type = task_defs.task_type_map[args.task] metric_meta = task_defs.metric_meta_map[args.task] # load model checkpoint_path = args.checkpoint assert os.path.exists(checkpoint_path) if args.cuda: state_dict = torch.load(checkpoint_path) else: state_dict = torch.load(checkpoint_path, map_location="cpu") config = state_dict['config'] config["cuda"] = args.cuda model = MTDNNModel(config, state_dict=state_dict) model.load(checkpoint_path) encoder_type = config.get('encoder_type', EncoderModelType.BERT) # load data test_data_set = SingleTaskDataset(args.prep_input, False, task_type=task_type, maxlen=args.max_seq_len) collater = Collater(is_train=False, encoder_type=encoder_type) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=collater.collate_fn, pin_memory=args.cuda) with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model( model, test_data, metric_meta=metric_meta, use_cuda=args.cuda, with_label=args.with_label) results = { 'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores } dump(args.score, results) if args.with_label: print(test_metrics)
def extract_encoding(model, data, use_cuda=True): if use_cuda: model.cuda() sequence_outputs = [] max_seq_len = 0 for idx, (batch_info, batch_data) in enumerate(data): batch_info, batch_data = Collater.patch_data(use_cuda, batch_info, batch_data) sequence_output = model.encode(batch_info, batch_data) sequence_outputs.append(sequence_output) max_seq_len = max(max_seq_len, sequence_output.shape[1]) new_sequence_outputs = [] for sequence_output in sequence_outputs: new_sequence_output = torch.zeros(sequence_output.shape[0], max_seq_len, sequence_output.shape[2]) new_sequence_output[:, :sequence_output.shape[1], :] = sequence_output new_sequence_outputs.append(new_sequence_output) return torch.cat(new_sequence_outputs)
def eval_model(model, data, metric_meta, device, with_label=True, label_mapper=None, task_type=TaskType.Classification): predictions = [] golds = [] scores = [] ids = [] metrics = {} print("****device={}".format(device)) for (batch_info, batch_data) in data: batch_info, batch_data = Collater.patch_data(device, batch_info, batch_data) score, pred, gold = model.predict(batch_info, batch_data) predictions.extend(pred) golds.extend(gold) scores.extend(score) ids.extend(batch_info['uids']) if task_type == TaskType.Span: from experiments.squad import squad_utils golds = squad_utils.merge_answers(ids, golds) predictions, scores = squad_utils.select_answers( ids, predictions, scores) if with_label: metrics = calc_metrics(metric_meta, golds, predictions, scores, label_mapper) for i in range(min(len(ids), 10)): print("{}\t{}\t{}\t{}\n".format(ids[i], predictions[i], scores[2 * i], scores[2 * i + 1])) #print("score heads={}".format(scores[:10])) return metrics, predictions, scores, golds, ids
state_dict = torch.load(checkpoint_path) else: state_dict = torch.load(checkpoint_path, map_location="cpu") config = state_dict['config'] config["cuda"] = args.cuda model = MTDNNModel(config, state_dict=state_dict) model.load(checkpoint_path) encoder_type = config.get('encoder_type', EncoderModelType.BERT) # load data test_data_set = SingleTaskDataset(args.prep_input, False, task_type=task_type, maxlen=args.max_seq_len) collater = Collater(gpu=args.cuda, is_train=False, task_id=args.task_id, task_type=task_type, data_type=data_type, encoder_type=encoder_type) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=collater.collate_fn, pin_memory=args.cuda) with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model( model, test_data, metric_meta=metric_meta, use_cuda=args.cuda, with_label=args.with_label)
def main(): logger.info('Launching the MT-DNN training') opt = vars(args) # update data dir opt['data_dir'] = data_dir batch_size = args.batch_size tasks = {} task_def_list = [] dropout_list = [] train_datasets = [] for dataset in args.train_datasets: prefix = dataset.split('_')[0] if prefix in tasks: continue task_id = len(tasks) tasks[prefix] = task_id task_def = task_defs.get_task_def(prefix) task_def_list.append(task_def) train_path = os.path.join(data_dir, '{}_train.json'.format(dataset)) logger.info('Loading {} as task {}'.format(train_path, task_id)) train_data_set = SingleTaskDataset(train_path, True, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def) train_datasets.append(train_data_set) train_collater = Collater(dropout_w=args.dropout_w, encoder_type=encoder_type, soft_label=args.mkd_opt > 0) multi_task_train_dataset = MultiTaskDataset(train_datasets) multi_task_batch_sampler = MultiTaskBatchSampler(train_datasets, args.batch_size, args.mix_opt, args.ratio) multi_task_train_data = DataLoader(multi_task_train_dataset, batch_sampler=multi_task_batch_sampler, collate_fn=train_collater.collate_fn, pin_memory=args.cuda) opt['task_def_list'] = task_def_list dev_data_list = [] test_data_list = [] test_collater = Collater(is_train=False, encoder_type=encoder_type) for dataset in args.test_datasets: prefix = dataset.split('_')[0] task_def = task_defs.get_task_def(prefix) task_id = tasks[prefix] task_type = task_def.task_type data_type = task_def.data_type dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset)) dev_data = None if os.path.exists(dev_path): dev_data_set = SingleTaskDataset(dev_path, False, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def) dev_data = DataLoader(dev_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) dev_data_list.append(dev_data) test_path = os.path.join(data_dir, '{}_test.json'.format(dataset)) test_data = None if os.path.exists(test_path): test_data_set = SingleTaskDataset(test_path, False, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) test_data_list.append(test_data) logger.info('#' * 20) logger.info(opt) logger.info('#' * 20) # div number of grad accumulation. num_all_batches = args.epochs * len( multi_task_train_data) // args.grad_accumulation_step logger.info('############# Gradient Accumulation Info #############') logger.info('number of step: {}'.format(args.epochs * len(multi_task_train_data))) logger.info('number of grad grad_accumulation step: {}'.format( args.grad_accumulation_step)) logger.info('adjusted number of step: {}'.format(num_all_batches)) logger.info('############# Gradient Accumulation Info #############') init_model = args.init_checkpoint state_dict = None if os.path.exists(init_model): state_dict = torch.load(init_model) config = state_dict['config'] else: if opt['encoder_type'] not in EncoderModelType._value2member_map_: raise ValueError("encoder_type is out of pre-defined types") literal_encoder_type = EncoderModelType( opt['encoder_type']).name.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[ literal_encoder_type] config = config_class.from_pretrained( init_model, output_hidden_states=True).to_dict( ) # change here to enable multi-layer output config['output_hidden_states'] = True config['attention_probs_dropout_prob'] = args.bert_dropout_p config['hidden_dropout_prob'] = args.bert_dropout_p config['multi_gpu_on'] = opt["multi_gpu_on"] if args.num_hidden_layers != -1: config['num_hidden_layers'] = args.num_hidden_layers opt.update(config) model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches) if args.resume and args.model_ckpt: logger.info('loading model from {}'.format(args.model_ckpt)) model.load(args.model_ckpt) #### model meta str headline = '############# Model Arch of MT-DNN #############' ### print network logger.info('\n{}\n{}\n'.format(headline, model.network)) # dump config config_file = os.path.join(output_dir, 'config.json') with open(config_file, 'w', encoding='utf-8') as writer: writer.write('{}\n'.format(json.dumps(opt))) writer.write('\n{}\n{}\n'.format(headline, model.network)) logger.info("Total number of params: {}".format(model.total_param)) # tensorboard if args.tensorboard: args.tensorboard_logdir = os.path.join(args.output_dir, args.tensorboard_logdir) tensorboard = SummaryWriter(log_dir=args.tensorboard_logdir) if args.encode_mode: for idx, dataset in enumerate(args.test_datasets): prefix = dataset.split('_')[0] test_data = test_data_list[idx] with torch.no_grad(): encoding = extract_encoding(model, test_data, use_cuda=args.cuda) torch.save( encoding, os.path.join(output_dir, '{}_encoding.pt'.format(dataset))) return for epoch in range(0, args.epochs): logger.warning('At epoch {}'.format(epoch)) start = datetime.now() for i, (batch_meta, batch_data) in enumerate(multi_task_train_data): batch_meta, batch_data = Collater.patch_data( args.cuda, batch_meta, batch_data) task_id = batch_meta['task_id'] model.update(batch_meta, batch_data) if (model.local_updates) % (args.log_per_updates * args.grad_accumulation_step ) == 0 or model.local_updates == 1: ramaining_time = str( (datetime.now() - start) / (i + 1) * (len(multi_task_train_data) - i - 1)).split('.')[0] logger.info( 'Task [{0:2}] updates[{1:6}] train loss[{2:.5f}] remaining[{3}]' .format(task_id, model.updates, model.train_loss.avg, ramaining_time)) if args.tensorboard: tensorboard.add_scalar('train/loss', model.train_loss.avg, global_step=model.updates) if args.save_per_updates_on and ( (model.local_updates) % (args.save_per_updates * args.grad_accumulation_step) == 0): model_file = os.path.join( output_dir, 'model_{}_{}.pt'.format(epoch, model.updates)) logger.info('Saving mt-dnn model to {}'.format(model_file)) model.save(model_file) for idx, dataset in enumerate(args.test_datasets): prefix = dataset.split('_')[0] task_def = task_defs.get_task_def(prefix) label_dict = task_def.label_vocab dev_data = dev_data_list[idx] if dev_data is not None: with torch.no_grad(): dev_metrics, dev_predictions, scores, golds, dev_ids = eval_model( model, dev_data, metric_meta=task_def.metric_meta, use_cuda=args.cuda, label_mapper=label_dict, task_type=task_def.task_type) for key, val in dev_metrics.items(): if args.tensorboard: tensorboard.add_scalar('dev/{}/{}'.format( dataset, key), val, global_step=epoch) if isinstance(val, str): logger.warning( 'Task {0} -- epoch {1} -- Dev {2}:\n {3}'.format( dataset, epoch, key, val)) else: logger.warning( 'Task {0} -- epoch {1} -- Dev {2}: {3:.3f}'.format( dataset, epoch, key, val)) score_file = os.path.join( output_dir, '{}_dev_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': dev_metrics, 'predictions': dev_predictions, 'uids': dev_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_dev_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) # test eval test_data = test_data_list[idx] if test_data is not None: with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model( model, test_data, metric_meta=task_def.metric_meta, use_cuda=args.cuda, with_label=False, label_mapper=label_dict, task_type=task_def.task_type) score_file = os.path.join( output_dir, '{}_test_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_test_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) logger.info('[new test scores saved.]') model_file = os.path.join(output_dir, 'model_{}.pt'.format(epoch)) model.save(model_file) if args.tensorboard: tensorboard.close()
def main(): # set up dist device = torch.device("cuda") if args.local_rank > -1: device = initialize_distributed(args) elif torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") opt = vars(args) # update data dir opt['data_dir'] = data_dir batch_size = args.batch_size print_message(logger, 'Launching the MT-DNN training') #return tasks = {} task_def_list = [] dropout_list = [] printable = args.local_rank in [-1, 0] train_datasets = [] for dataset in args.train_datasets: prefix = dataset.split('_')[0] if prefix in tasks: continue task_id = len(tasks) tasks[prefix] = task_id task_def = task_defs.get_task_def(prefix) task_def_list.append(task_def) train_path = os.path.join(data_dir, '{}_train.json'.format(dataset)) print_message(logger, 'Loading {} as task {}'.format(train_path, task_id)) train_data_set = SingleTaskDataset(train_path, True, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def, printable=printable) train_datasets.append(train_data_set) train_collater = Collater(dropout_w=args.dropout_w, encoder_type=encoder_type, soft_label=args.mkd_opt > 0, max_seq_len=args.max_seq_len, do_padding=args.do_padding) multi_task_train_dataset = MultiTaskDataset(train_datasets) if args.local_rank != -1: multi_task_batch_sampler = DistMultiTaskBatchSampler( train_datasets, args.batch_size, args.mix_opt, args.ratio, rank=args.local_rank, world_size=args.world_size) else: multi_task_batch_sampler = MultiTaskBatchSampler( train_datasets, args.batch_size, args.mix_opt, args.ratio, bin_on=args.bin_on, bin_size=args.bin_size, bin_grow_ratio=args.bin_grow_ratio) multi_task_train_data = DataLoader(multi_task_train_dataset, batch_sampler=multi_task_batch_sampler, collate_fn=train_collater.collate_fn, pin_memory=args.cuda) opt['task_def_list'] = task_def_list dev_data_list = [] test_data_list = [] test_collater = Collater(is_train=False, encoder_type=encoder_type, max_seq_len=args.max_seq_len, do_padding=args.do_padding) for dataset in args.test_datasets: prefix = dataset.split('_')[0] task_def = task_defs.get_task_def(prefix) task_id = tasks[prefix] task_type = task_def.task_type data_type = task_def.data_type dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset)) dev_data = None if os.path.exists(dev_path): dev_data_set = SingleTaskDataset(dev_path, False, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def, printable=printable) if args.local_rank != -1: dev_data_set = DistTaskDataset(dev_data_set, task_id) single_task_batch_sampler = DistSingleTaskBatchSampler( dev_data_set, args.batch_size_eval, rank=args.local_rank, world_size=args.world_size) dev_data = DataLoader(dev_data_set, batch_sampler=single_task_batch_sampler, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) else: dev_data = DataLoader(dev_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) dev_data_list.append(dev_data) test_path = os.path.join(data_dir, '{}_test.json'.format(dataset)) test_data = None if os.path.exists(test_path): test_data_set = SingleTaskDataset(test_path, False, maxlen=args.max_seq_len, task_id=task_id, task_def=task_def, printable=printable) if args.local_rank != -1: test_data_set = DistTaskDataset(test_data_set, task_id) single_task_batch_sampler = DistSingleTaskBatchSampler( test_data_set, args.batch_size_eval, rank=args.local_rank, world_size=args.world_size) test_data = DataLoader(test_data_set, batch_sampler=single_task_batch_sampler, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) else: test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) test_data_list.append(test_data) print_message(logger, '#' * 20) print_message(logger, opt) print_message(logger, '#' * 20) # div number of grad accumulation. num_all_batches = args.epochs * len( multi_task_train_data) // args.grad_accumulation_step print_message(logger, '############# Gradient Accumulation Info #############') print_message( logger, 'number of step: {}'.format(args.epochs * len(multi_task_train_data))) print_message( logger, 'number of grad grad_accumulation step: {}'.format( args.grad_accumulation_step)) print_message(logger, 'adjusted number of step: {}'.format(num_all_batches)) print_message(logger, '############# Gradient Accumulation Info #############') init_model = args.init_checkpoint state_dict = None if os.path.exists(init_model): if encoder_type == EncoderModelType.BERT or \ encoder_type == EncoderModelType.DEBERTA or \ encoder_type == EncoderModelType.ELECTRA: state_dict = torch.load(init_model, map_location=device) config = state_dict['config'] elif encoder_type == EncoderModelType.ROBERTA or encoder_type == EncoderModelType.XLM: model_path = '{}/model.pt'.format(init_model) state_dict = torch.load(model_path, map_location=device) arch = state_dict['args'].arch arch = arch.replace('_', '-') if encoder_type == EncoderModelType.XLM: arch = "xlm-{}".format(arch) # convert model arch from data_utils.roberta_utils import update_roberta_keys from data_utils.roberta_utils import patch_name_dict state = update_roberta_keys( state_dict['model'], nlayer=state_dict['args'].encoder_layers) state = patch_name_dict(state) literal_encoder_type = EncoderModelType( opt['encoder_type']).name.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[ literal_encoder_type] config = config_class.from_pretrained(arch).to_dict() state_dict = {'state': state} else: if opt['encoder_type'] not in EncoderModelType._value2member_map_: raise ValueError("encoder_type is out of pre-defined types") literal_encoder_type = EncoderModelType( opt['encoder_type']).name.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[ literal_encoder_type] config = config_class.from_pretrained(init_model).to_dict() config['attention_probs_dropout_prob'] = args.bert_dropout_p config['hidden_dropout_prob'] = args.bert_dropout_p config['multi_gpu_on'] = opt["multi_gpu_on"] if args.num_hidden_layers > 0: config['num_hidden_layers'] = args.num_hidden_layers opt.update(config) model = MTDNNModel(opt, device=device, state_dict=state_dict, num_train_step=num_all_batches) if args.resume and args.model_ckpt: print_message(logger, 'loading model from {}'.format(args.model_ckpt)) model.load(args.model_ckpt) #### model meta str headline = '############# Model Arch of MT-DNN #############' ### print network print_message(logger, '\n{}\n{}\n'.format(headline, model.network)) # dump config config_file = os.path.join(output_dir, 'config.json') with open(config_file, 'w', encoding='utf-8') as writer: writer.write('{}\n'.format(json.dumps(opt))) writer.write('\n{}\n{}\n'.format(headline, model.network)) print_message(logger, "Total number of params: {}".format(model.total_param)) # tensorboard tensorboard = None if args.tensorboard: args.tensorboard_logdir = os.path.join(args.output_dir, args.tensorboard_logdir) tensorboard = SummaryWriter(log_dir=args.tensorboard_logdir) if args.encode_mode: for idx, dataset in enumerate(args.test_datasets): prefix = dataset.split('_')[0] test_data = test_data_list[idx] with torch.no_grad(): encoding = extract_encoding(model, test_data, use_cuda=args.cuda) torch.save( encoding, os.path.join(output_dir, '{}_encoding.pt'.format(dataset))) return for epoch in range(0, args.epochs): print_message(logger, 'At epoch {}'.format(epoch), level=1) start = datetime.now() for i, (batch_meta, batch_data) in enumerate(multi_task_train_data): batch_meta, batch_data = Collater.patch_data( device, batch_meta, batch_data) task_id = batch_meta['task_id'] model.update(batch_meta, batch_data) if (model.updates) % ( args.log_per_updates) == 0 or model.updates == 1: ramaining_time = str( (datetime.now() - start) / (i + 1) * (len(multi_task_train_data) - i - 1)).split('.')[0] if args.adv_train and args.debug: debug_info = ' basic loss[%.5f] adv loss[%.5f] emb val[%.8f] noise val[%.8f] noise grad val[%.8f] no proj noise[%.8f] ' % ( model.basic_loss.avg, model.adv_loss.avg, model.emb_val.avg, model.noise_val.avg, model.noise_grad_val.avg, model.no_proj_noise_val.avg) else: debug_info = ' ' print_message( logger, 'Task [{0:2}] updates[{1:6}] train loss[{2:.5f}]{3}remaining[{4}]' .format(task_id, model.updates, model.train_loss.avg, debug_info, ramaining_time)) if args.tensorboard: tensorboard.add_scalar('train/loss', model.train_loss.avg, global_step=model.updates) if args.save_per_updates_on and ( (model.local_updates) % (args.save_per_updates * args.grad_accumulation_step) == 0) and args.local_rank in [-1, 0]: model_file = os.path.join( output_dir, 'model_{}_{}.pt'.format(epoch, model.updates)) evaluation(model, args.test_datasets, dev_data_list, task_defs, output_dir, epoch, n_updates=args.save_per_updates, with_label=True, tensorboard=tensorboard, glue_format_on=args.glue_format_on, test_on=False, device=device, logger=logger) evaluation(model, args.test_datasets, test_data_list, task_defs, output_dir, epoch, n_updates=args.save_per_updates, with_label=False, tensorboard=tensorboard, glue_format_on=args.glue_format_on, test_on=True, device=device, logger=logger) print_message(logger, 'Saving mt-dnn model to {}'.format(model_file)) model.save(model_file) evaluation(model, args.test_datasets, dev_data_list, task_defs, output_dir, epoch, with_label=True, tensorboard=tensorboard, glue_format_on=args.glue_format_on, test_on=False, device=device, logger=logger) evaluation(model, args.test_datasets, test_data_list, task_defs, output_dir, epoch, with_label=False, tensorboard=tensorboard, glue_format_on=args.glue_format_on, test_on=True, device=device, logger=logger) print_message(logger, '[new test scores at {} saved.]'.format(epoch)) if args.local_rank in [-1, 0]: model_file = os.path.join(output_dir, 'model_{}.pt'.format(epoch)) model.save(model_file) if args.tensorboard: tensorboard.close()
def load_model_for_viz_0(task_def_path, checkpoint_path, input_path, model_type='bert-base-cased', do_lower_case=False, use_cuda=True): # load task info task = os.path.splitext(os.path.basename(task_def_path))[0] task_defs = TaskDefs(task_def_path) assert task in task_defs._task_type_map assert task in task_defs._data_type_map assert task in task_defs._metric_meta_map prefix = task.split('_')[0] task_def = task_defs.get_task_def(prefix) data_type = task_defs._data_type_map[task] task_type = task_defs._task_type_map[task] metric_meta = task_defs._metric_meta_map[task] # load model assert os.path.exists(checkpoint_path) state_dict = torch.load(checkpoint_path) config = state_dict['config'] config["cuda"] = use_cuda task_def = task_defs.get_task_def(prefix) task_def_list = [task_def] config['task_def_list'] = task_def_list ####### temp fix ####### config['fp16'] = False config['answer_opt'] = 0 config['adv_train'] = False del state_dict['optimizer'] ######################### model = MTDNNModel(config, state_dict=state_dict) encoder_type = config.get('encoder_type', EncoderModelType.BERT) root = os.path.basename(task_def_path) literal_model_type = model_type.split('-')[0].upper() encoder_model = EncoderModelType[literal_model_type] literal_model_type = literal_model_type.lower() mt_dnn_suffix = literal_model_type if 'base' in model_type: mt_dnn_suffix += "_base" elif 'large' in model_type: mt_dnn_suffix += "_large" # load tokenizer config_class, model_class, tokenizer_class = MODEL_CLASSES[ literal_model_type] tokenizer = tokenizer_class.from_pretrained(model_type, do_lower_case=do_lower_case) # load data prep_input = input_path test_data_set = SingleTaskDataset(prep_input, False, maxlen=512, task_id=0, task_def=task_def) collater = Collater(is_train=False, encoder_type=encoder_type) test_data = DataLoader(test_data_set, batch_size=1, collate_fn=collater.collate_fn, pin_memory=True) idx = 0 results = [] return model.mnetwork.module.bert, config, test_data
def load_model_for_viz_1(task_def_path, checkpoint_path, input_path, model_type='bert-base-cased', do_lower_case=False, use_cuda=True): # load task info task = os.path.splitext(os.path.basename(task_def_path))[0] task_defs = TaskDefs(task_def_path) assert task in task_defs._task_type_map assert task in task_defs._data_type_map assert task in task_defs._metric_meta_map prefix = task.split('_')[0] task_def = task_defs.get_task_def(prefix) data_type = task_defs._data_type_map[task] task_type = task_defs._task_type_map[task] metric_meta = task_defs._metric_meta_map[task] # load model assert os.path.exists(checkpoint_path) state_dict = torch.load(checkpoint_path) config = state_dict['config'] config["cuda"] = use_cuda device = torch.device("cuda" if use_cuda else "cpu") task_def = task_defs.get_task_def(prefix) task_def_list = [task_def] config['task_def_list'] = task_def_list ## temp fix config['fp16'] = False config['answer_opt'] = 0 config['adv_train'] = False #del state_dict['optimizer'] config['output_attentions'] = True config['local_rank'] = -1 model = MTDNNModel(config, device, state_dict=state_dict) encoder_type = config.get('encoder_type', EncoderModelType.BERT) root = os.path.basename(task_def_path) literal_model_type = model_type.split('-')[0].upper() encoder_model = EncoderModelType[literal_model_type] literal_model_type = literal_model_type.lower() mt_dnn_suffix = literal_model_type if 'base' in model_type: mt_dnn_suffix += "_base" elif 'large' in model_type: mt_dnn_suffix += "_large" # load tokenizer config_class, model_class, tokenizer_class = MODEL_CLASSES[ literal_model_type] tokenizer = tokenizer_class.from_pretrained(model_type, do_lower_case=do_lower_case) # load data prep_input = input_path test_data_set = SingleTaskDataset(prep_input, False, maxlen=512, task_id=0, task_def=task_def) collater = Collater(is_train=False, encoder_type=encoder_type) test_data = DataLoader(test_data_set, batch_size=1, collate_fn=collater.collate_fn, pin_memory=True) idx = 0 results = [] for batch_meta, batch_data in tqdm(test_data): if idx < 360: idx += 1 continue batch_meta, batch_data = Collater.patch_data(device, batch_meta, batch_data) model.network.eval() task_id = batch_meta['task_id'] task_def = TaskDef.from_dict(batch_meta['task_def']) task_type = task_def.task_type task_obj = tasks.get_task_obj(task_def) inputs = batch_data[:batch_meta['input_len']] if len(inputs) == 3: inputs.append(None) inputs.append(None) inputs.append(task_id) input_ids = inputs[0] token_type_ids = inputs[1] attention = model.mnetwork.module.bert( input_ids, token_type_ids=token_type_ids)[-1] batch_size = batch_data[0].shape[0] for i in range(batch_size): attention = tuple([item[i:i + 1, :, :, :] for item in attention]) input_id_list = input_ids[i].tolist() tokens = tokenizer.convert_ids_to_tokens(input_id_list) idx_sep = listRightIndex(tokens, '[SEP]') + 1 tokens = tokens[:idx_sep] attention = tuple( [item[:, :, :idx_sep, :idx_sep] for item in attention]) results.append((attention, tokens)) idx += batch_size return results
def main(): logger.info('Launching the MT-DNN training') opt = vars(args) # update data dir opt['data_dir'] = data_dir batch_size = args.batch_size # tensorboard tensorboard = None if args.tensorboard: args.tensorboard_logdir = os.path.join(args.output_dir, args.tensorboard_logdir) tensorboard = SummaryWriter(log_dir=args.tensorboard_logdir) json_logfile = os.path.join(args.output_dir, "runtime_log.json") tasks = {} tasks_class = {} nclass_list = [] decoder_opts = [] task_types = [] dropout_list = [] loss_types = [] kd_loss_types = [] train_datasets = [] for dataset in args.train_datasets: prefix = dataset.split('_')[0] if prefix in tasks: continue assert prefix in task_defs.n_class_map assert prefix in task_defs.data_type_map data_type = task_defs.data_type_map[prefix] nclass = task_defs.n_class_map[prefix] task_id = len(tasks) if args.mtl_opt > 0: task_id = tasks_class[nclass] if nclass in tasks_class else len( tasks_class) task_type = task_defs.task_type_map[prefix] dopt = generate_decoder_opt(task_defs.enable_san_map[prefix], opt['answer_opt']) if task_id < len(decoder_opts): decoder_opts[task_id] = min(decoder_opts[task_id], dopt) else: decoder_opts.append(dopt) task_types.append(task_type) loss_types.append(task_defs.loss_map[prefix]) kd_loss_types.append(task_defs.kd_loss_map[prefix]) if prefix not in tasks: tasks[prefix] = len(tasks) if args.mtl_opt < 1: nclass_list.append(nclass) if (nclass not in tasks_class): tasks_class[nclass] = len(tasks_class) if args.mtl_opt > 0: nclass_list.append(nclass) dropout_p = task_defs.dropout_p_map.get(prefix, args.dropout_p) dropout_list.append(dropout_p) train_path = os.path.join(data_dir, '{}_train.json'.format(dataset)) logger.info('Loading {} as task {}'.format(train_path, task_id)) train_data_set = SingleTaskDataset(train_path, True, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) train_datasets.append(train_data_set) train_collater = Collater(dropout_w=args.dropout_w, encoder_type=encoder_type) multi_task_train_dataset = MultiTaskDataset(train_datasets) # MTSampler = SAMPLERS[args.sampler] n_tasks = len(tasks) dataset_sizes = [len(dataset) for dataset in train_datasets] if "random" in args.controller: controller = CONTROLLERS[args.controller]( n_task=n_tasks, dataset_names=args.train_datasets, dataset_sizes=dataset_sizes, batch_size=args.batch_size, rebatch_size=args.batch_size_train, tensorboard=tensorboard, log_filename=json_logfile) else: controller = CONTROLLERS[args.controller]( n_task=n_tasks, phi=args.phi, K=args.concurrent_cnt, dataset_names=args.train_datasets, dataset_sizes=dataset_sizes, max_cnt=args.max_queue_cnt, batch_size=args.batch_size, rebatch_size=args.batch_size_train, tensorboard=tensorboard, log_filename=json_logfile) multi_task_batch_sampler = ACLSampler(train_datasets, args.batch_size, controller=controller) # controller.max_step = len(multi_task_batch_sampler) multi_task_train_data = DataLoader(multi_task_train_dataset, batch_sampler=multi_task_batch_sampler, collate_fn=train_collater.collate_fn, pin_memory=args.cuda) opt['answer_opt'] = decoder_opts opt['task_types'] = task_types opt['tasks_dropout_p'] = dropout_list opt['loss_types'] = loss_types opt['kd_loss_types'] = kd_loss_types args.label_size = ','.join([str(l) for l in nclass_list]) logger.info(args.label_size) dev_data_list = [] test_data_list = [] test_collater = Collater(is_train=False, encoder_type=encoder_type) for dataset in args.test_datasets: prefix = dataset.split('_')[0] task_id = tasks_class[ task_defs. n_class_map[prefix]] if args.mtl_opt > 0 else tasks[prefix] task_type = task_defs.task_type_map[prefix] pw_task = False if task_type == TaskType.Ranking: pw_task = True assert prefix in task_defs.data_type_map data_type = task_defs.data_type_map[prefix] dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset)) dev_data = None if os.path.exists(dev_path): dev_data_set = SingleTaskDataset(dev_path, False, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) dev_data = DataLoader(dev_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) dev_data_list.append(dev_data) test_path = os.path.join(data_dir, '{}_test.json'.format(dataset)) test_data = None if os.path.exists(test_path): test_data_set = SingleTaskDataset(test_path, False, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) test_data_list.append(test_data) logger.info('#' * 20) logger.info(opt) logger.info('#' * 20) # div number of grad accumulation. num_all_batches = args.epochs * len( multi_task_train_data) // args.grad_accumulation_step logger.info('############# Gradient Accumulation Info #############') logger.info('number of step: {}'.format(args.epochs * len(multi_task_train_data))) logger.info('number of grad grad_accumulation step: {}'.format( args.grad_accumulation_step)) logger.info('adjusted number of step: {}'.format(num_all_batches)) logger.info('############# Gradient Accumulation Info #############') bert_model_path = args.init_checkpoint state_dict = None if encoder_type == EncoderModelType.BERT: if os.path.exists(bert_model_path): state_dict = torch.load(bert_model_path) config = state_dict['config'] config['attention_probs_dropout_prob'] = args.bert_dropout_p config['hidden_dropout_prob'] = args.bert_dropout_p config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) else: logger.error('#' * 20) logger.error( 'Could not find the init model!\n The parameters will be initialized randomly!' ) logger.error('#' * 20) config = BertConfig(vocab_size_or_config_json_file=30522).to_dict() config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) elif encoder_type == EncoderModelType.ROBERTA: bert_model_path = '{}/model.pt'.format(bert_model_path) if os.path.exists(bert_model_path): new_state_dict = {} state_dict = torch.load(bert_model_path) for key, val in state_dict['model'].items(): if key.startswith('decoder.sentence_encoder'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val elif key.startswith('classification_heads'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val state_dict = {'state': new_state_dict} # add score history score_history = [[] for _ in range(len(args.test_datasets))] total_scores = [] model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches) if args.resume and args.model_ckpt: logger.info('loading model from {}'.format(args.model_ckpt)) model.load(args.model_ckpt) #### model meta str headline = '############# Model Arch of MT-DNN #############' ### print network logger.info('\n{}\n{}\n'.format(headline, model.network)) # dump config config_file = os.path.join(output_dir, 'config.json') with open(config_file, 'w', encoding='utf-8') as writer: writer.write('{}\n'.format(json.dumps(opt))) writer.write('\n{}\n{}\n'.format(headline, model.network)) logger.info("Total number of params: {}".format(model.total_param)) for epoch in range(0, args.epochs): logger.warning('At epoch {0}/{1}'.format(epoch + 1, args.epochs)) start = datetime.now() total_len = len(controller) controller.set_epoch(epoch) for i, (batch_meta, batch_data) in enumerate(multi_task_train_data): batch_meta, batch_data = Collater.patch_data( args.cuda, batch_meta, batch_data) task_id = batch_meta['task_id'] loss = model.calculate_loss(batch_meta, batch_data) controller.insert(task_id, (batch_meta, batch_data), loss.item()) if i % args.log_per_updates == 0: ramaining_time = str( (datetime.now() - start) / (controller.cur_step + 1) * (total_len - controller.cur_step - 1)).split('.')[0] logger.info("Epoch {0} Progress {1} / {2} ({3:.2%})".format( epoch + 1, controller.cur_step, total_len, controller.cur_step * 1.0 / total_len)) # logger.info("Progress {0} / {1} ({2:.2f}%)".format(i, total_len, i*100.0/total_len)) logger.info( 'Task [{0:2}] updates[{1:6}] train loss[{2:.5f}] remaining[{3}]' .format(task_id, model.updates, model.train_loss.avg, ramaining_time)) summary_str = controller.summary() for line in summary_str.split("\n"): logger.info(line) # avg_loss, out_loss, loss_change, min_loss, min_out_loss = controller.get_loss() # logger.info('List of loss {}'.format(",".join(avg_loss))) # logger.info('List of out_loss {}'.format(",".join(out_loss))) # logger.info('List of loss_change {}'.format(",".join(loss_change))) # logger.info('List of min_loss {}'.format(",".join(min_loss))) # logger.info('List of min_out_loss {}'.format(",".join(min_out_loss))) # chosen = [ "%s:%.3f "%(k,v) for k, v in controller.scaled_dict.items()] # logger.info('List of Scaled Choosen time {}'.format(",".join(chosen))) if args.tensorboard: tensorboard.add_scalar('train/loss', model.train_loss.avg, global_step=model.updates) controller.step(model=model) if args.save_per_updates_on and ( (model.local_updates) % (args.save_per_updates * args.grad_accumulation_step) == 0): model_file = os.path.join( output_dir, 'model_{}_{}.pt'.format(epoch, model.updates)) logger.info('Saving mt-dnn model to {}'.format(model_file)) model.save(model_file) total_average_score = 0.0 scoring_cnt = 0 score_dict = dict() scoring_datasets = "cola,sst,mrpc,stsb,qqp,mnli,qnli,rte,wnli".split( ",") logger.info('Start Testing') for idx, dataset in enumerate(args.test_datasets): prefix = dataset.split('_')[0] label_dict = task_defs.global_map.get(prefix, None) dev_data = dev_data_list[idx] if dev_data is not None: with torch.no_grad(): dev_metrics, dev_predictions, scores, golds, dev_ids = eval_model( model, dev_data, metric_meta=task_defs.metric_meta_map[prefix], use_cuda=args.cuda, label_mapper=label_dict, task_type=task_defs.task_type_map[prefix]) task_score = 0.0 for key, val in dev_metrics.items(): if args.tensorboard: tensorboard.add_scalar('dev/{}/{}'.format( dataset, key), val, global_step=epoch) if isinstance(val, str): logger.warning( 'Task {0} -- epoch {1} -- Dev {2}:\n {3}'.format( dataset, epoch + 1, key, val)) else: logger.warning( 'Task {0} -- epoch {1} -- Dev {2}: {3:.2f}'.format( dataset, epoch + 1, key, val)) task_score += val if len(dev_metrics) > 1: task_score /= len(dev_metrics) logger.warning( 'Task {0} -- epoch {1} -- Dev {2}: {3:.2f}'.format( dataset, epoch + 1, "Average", task_score)) if prefix in scoring_datasets: scoring_cnt += 1 if prefix not in score_dict: score_dict[prefix] = task_score else: score_dict[prefix] = (score_dict[prefix] + task_score) / 2 total_average_score += task_score score_history[idx].append("%.2f" % task_score) logger.warning('Task {0} -- epoch {1} -- Dev {2}: {3}'.format( dataset, epoch + 1, "History", score_history[idx])) score_file = os.path.join( output_dir, '{}_dev_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': dev_metrics, 'predictions': dev_predictions, 'uids': dev_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_dev_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) # test eval test_data = test_data_list[idx] if test_data is not None: with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model( model, test_data, metric_meta=task_defs.metric_meta_map[prefix], use_cuda=args.cuda, with_label=False, label_mapper=label_dict, task_type=task_defs.task_type_map[prefix]) score_file = os.path.join( output_dir, '{}_test_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_test_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) logger.info('[new test scores saved.]') scoreing_cnt = len(score_dict) if scoreing_cnt > 0: mean_value = np.mean([v for k, v in score_dict.items()]) logger.warning( 'Epoch {0} -- Dev {1} Tasks, Average Score : {2:.3f}'.format( epoch + 1, scoring_cnt, mean_value)) score_dict['avg'] = mean_value total_scores.append(score_dict) model_file = os.path.join(output_dir, 'model_{}.pt'.format(epoch)) model.save(model_file) for i, total_score in enumerate(total_scores): logger.info(total_score) if args.tensorboard: tensorboard.close()
def main(): logger.info('Launching the MT-DNN training') opt = vars(args) # update data dir opt['data_dir'] = data_dir batch_size = args.batch_size tasks = {} tasks_class = {} nclass_list = [] decoder_opts = [] task_types = [] dropout_list = [] loss_types = [] kd_loss_types = [] train_datasets = [] for dataset in args.train_datasets: prefix = dataset.split('_')[0] if prefix in tasks: continue assert prefix in task_defs.n_class_map assert prefix in task_defs.data_type_map data_type = task_defs.data_type_map[prefix] nclass = task_defs.n_class_map[prefix] task_id = len(tasks) if args.mtl_opt > 0: task_id = tasks_class[nclass] if nclass in tasks_class else len( tasks_class) task_type = task_defs.task_type_map[prefix] dopt = generate_decoder_opt(task_defs.enable_san_map[prefix], opt['answer_opt']) if task_id < len(decoder_opts): decoder_opts[task_id] = min(decoder_opts[task_id], dopt) else: decoder_opts.append(dopt) task_types.append(task_type) loss_types.append(task_defs.loss_map[prefix]) kd_loss_types.append(task_defs.kd_loss_map[prefix]) if prefix not in tasks: tasks[prefix] = len(tasks) if args.mtl_opt < 1: nclass_list.append(nclass) if (nclass not in tasks_class): tasks_class[nclass] = len(tasks_class) if args.mtl_opt > 0: nclass_list.append(nclass) dropout_p = task_defs.dropout_p_map.get(prefix, args.dropout_p) dropout_list.append(dropout_p) train_path = os.path.join(data_dir, '{}_train.json'.format(dataset)) logger.info('Loading {} as task {}'.format(train_path, task_id)) train_data_set = SingleTaskDataset(train_path, True, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) train_datasets.append(train_data_set) train_collater = Collater(dropout_w=args.dropout_w, encoder_type=encoder_type) multi_task_train_dataset = MultiTaskDataset(train_datasets) multi_task_batch_sampler = MultiTaskBatchSampler(train_datasets, args.batch_size, args.mix_opt, args.ratio) multi_task_train_data = DataLoader(multi_task_train_dataset, batch_sampler=multi_task_batch_sampler, collate_fn=train_collater.collate_fn, pin_memory=args.cuda) opt['answer_opt'] = decoder_opts opt['task_types'] = task_types opt['tasks_dropout_p'] = dropout_list opt['loss_types'] = loss_types opt['kd_loss_types'] = kd_loss_types args.label_size = ','.join([str(l) for l in nclass_list]) logger.info(args.label_size) dev_data_list = [] test_data_list = [] test_collater = Collater(is_train=False, encoder_type=encoder_type) for dataset in args.test_datasets: prefix = dataset.split('_')[0] task_id = tasks_class[ task_defs. n_class_map[prefix]] if args.mtl_opt > 0 else tasks[prefix] task_type = task_defs.task_type_map[prefix] pw_task = False if task_type == TaskType.Ranking: pw_task = True assert prefix in task_defs.data_type_map data_type = task_defs.data_type_map[prefix] dev_path = os.path.join(data_dir, '{}_dev.json'.format(dataset)) dev_data = None if os.path.exists(dev_path): dev_data_set = SingleTaskDataset(dev_path, False, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) dev_data = DataLoader(dev_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) dev_data_list.append(dev_data) test_path = os.path.join(data_dir, '{}_test.json'.format(dataset)) test_data = None if os.path.exists(test_path): test_data_set = SingleTaskDataset(test_path, False, maxlen=args.max_seq_len, task_id=task_id, task_type=task_type, data_type=data_type) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=test_collater.collate_fn, pin_memory=args.cuda) test_data_list.append(test_data) logger.info('#' * 20) logger.info(opt) logger.info('#' * 20) # div number of grad accumulation. num_all_batches = args.epochs * len( multi_task_train_data) // args.grad_accumulation_step logger.info('############# Gradient Accumulation Info #############') logger.info('number of step: {}'.format(args.epochs * len(multi_task_train_data))) logger.info('number of grad grad_accumulation step: {}'.format( args.grad_accumulation_step)) logger.info('adjusted number of step: {}'.format(num_all_batches)) logger.info('############# Gradient Accumulation Info #############') bert_model_path = args.init_checkpoint state_dict = None if encoder_type == EncoderModelType.BERT: if os.path.exists(bert_model_path): state_dict = torch.load(bert_model_path) config = state_dict['config'] config['attention_probs_dropout_prob'] = args.bert_dropout_p config['hidden_dropout_prob'] = args.bert_dropout_p config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) else: logger.error('#' * 20) logger.error( 'Could not find the init model!\n The parameters will be initialized randomly!' ) logger.error('#' * 20) config = BertConfig(vocab_size_or_config_json_file=30522).to_dict() config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) elif encoder_type == EncoderModelType.ROBERTA: bert_model_path = '{}/model.pt'.format(bert_model_path) if os.path.exists(bert_model_path): new_state_dict = {} state_dict = torch.load(bert_model_path) for key, val in state_dict['model'].items(): if key.startswith('decoder.sentence_encoder'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val elif key.startswith('classification_heads'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val state_dict = {'state': new_state_dict} model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches) if args.resume and args.model_ckpt: logger.info('loading model from {}'.format(args.model_ckpt)) model.load(args.model_ckpt) #### model meta str headline = '############# Model Arch of MT-DNN #############' ### print network logger.info('\n{}\n{}\n'.format(headline, model.network)) # dump config config_file = os.path.join(output_dir, 'config.json') with open(config_file, 'w', encoding='utf-8') as writer: writer.write('{}\n'.format(json.dumps(opt))) writer.write('\n{}\n{}\n'.format(headline, model.network)) logger.info("Total number of params: {}".format(model.total_param)) # tensorboard if args.tensorboard: args.tensorboard_logdir = os.path.join(args.output_dir, args.tensorboard_logdir) tensorboard = SummaryWriter(log_dir=args.tensorboard_logdir) for epoch in range(0, args.epochs): logger.warning('At epoch {}'.format(epoch)) start = datetime.now() for i, (batch_meta, batch_data) in enumerate(multi_task_train_data): batch_meta, batch_data = Collater.patch_data( args.cuda, batch_meta, batch_data) task_id = batch_meta['task_id'] model.update(batch_meta, batch_data) if (model.local_updates) % (args.log_per_updates * args.grad_accumulation_step ) == 0 or model.local_updates == 1: ramaining_time = str( (datetime.now() - start) / (i + 1) * (len(multi_task_train_data) - i - 1)).split('.')[0] logger.info( 'Task [{0:2}] updates[{1:6}] train loss[{2:.5f}] remaining[{3}]' .format(task_id, model.updates, model.train_loss.avg, ramaining_time)) if args.tensorboard: tensorboard.add_scalar('train/loss', model.train_loss.avg, global_step=model.updates) if args.save_per_updates_on and ( (model.local_updates) % (args.save_per_updates * args.grad_accumulation_step) == 0): model_file = os.path.join( output_dir, 'model_{}_{}.pt'.format(epoch, model.updates)) logger.info('Saving mt-dnn model to {}'.format(model_file)) model.save(model_file) for idx, dataset in enumerate(args.test_datasets): prefix = dataset.split('_')[0] label_dict = task_defs.global_map.get(prefix, None) dev_data = dev_data_list[idx] if dev_data is not None: with torch.no_grad(): dev_metrics, dev_predictions, scores, golds, dev_ids = eval_model( model, dev_data, metric_meta=task_defs.metric_meta_map[prefix], use_cuda=args.cuda, label_mapper=label_dict, task_type=task_defs.task_type_map[prefix]) for key, val in dev_metrics.items(): if args.tensorboard: tensorboard.add_scalar('dev/{}/{}'.format( dataset, key), val, global_step=epoch) if isinstance(val, str): logger.warning( 'Task {0} -- epoch {1} -- Dev {2}:\n {3}'.format( dataset, epoch, key, val)) else: logger.warning( 'Task {0} -- epoch {1} -- Dev {2}: {3:.3f}'.format( dataset, epoch, key, val)) score_file = os.path.join( output_dir, '{}_dev_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': dev_metrics, 'predictions': dev_predictions, 'uids': dev_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_dev_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) # test eval test_data = test_data_list[idx] if test_data is not None: with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model( model, test_data, metric_meta=task_defs.metric_meta_map[prefix], use_cuda=args.cuda, with_label=False, label_mapper=label_dict, task_type=task_defs.task_type_map[prefix]) score_file = os.path.join( output_dir, '{}_test_scores_{}.json'.format(dataset, epoch)) results = { 'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores } dump(score_file, results) if args.glue_format_on: from experiments.glue.glue_utils import submit official_score_file = os.path.join( output_dir, '{}_test_scores_{}.tsv'.format(dataset, epoch)) submit(official_score_file, results, label_dict) logger.info('[new test scores saved.]') model_file = os.path.join(output_dir, 'model_{}.pt'.format(epoch)) model.save(model_file) if args.tensorboard: tensorboard.close()
assert os.path.exists(checkpoint_path) if args.cuda: state_dict = torch.load(checkpoint_path) else: state_dict = torch.load(checkpoint_path, map_location="cpu") config = state_dict['config'] config["cuda"] = args.cuda task_def = task_defs.get_task_def(prefix) task_def_list = [task_def] config['task_def_list'] = task_def_list ## temp fix config['answer_opt'] = 0 config['adv_train'] = False model = MTDNNModel(config, state_dict=state_dict) model.load(checkpoint_path) encoder_type = config.get('encoder_type', EncoderModelType.BERT) # load data test_data_set = SingleTaskDataset(args.prep_input, False, maxlen=args.max_seq_len, task_id=args.task_id, task_def=task_def) collater = Collater(is_train=False, encoder_type=encoder_type) test_data = DataLoader(test_data_set, batch_size=args.batch_size_eval, collate_fn=collater.collate_fn, pin_memory=args.cuda) with torch.no_grad(): test_metrics, test_predictions, scores, golds, test_ids = eval_model(model, test_data, metric_meta=metric_meta, use_cuda=args.cuda, with_label=args.with_label) results = {'metrics': test_metrics, 'predictions': test_predictions, 'uids': test_ids, 'scores': scores} dump(args.score, results) if args.with_label: print(test_metrics)
def main(): global tokenizer, test_collater, model logger.info('Launching the MT-DNN training') opt = vars(args) # update data dir opt['data_dir'] = data_dir batch_size = args.batch_size tasks = {} tasks_class = {} nclass_list = [] decoder_opts = [] task_types = [] dropout_list = [] loss_types = [] kd_loss_types = [] #train_datasets = [] for dataset in args.train_datasets: prefix = dataset.split('_')[0] if prefix in tasks: continue assert prefix in task_defs.n_class_map assert prefix in task_defs.data_type_map data_type = task_defs.data_type_map[prefix] nclass = task_defs.n_class_map[prefix] task_id = len(tasks) if args.mtl_opt > 0: task_id = tasks_class[nclass] if nclass in tasks_class else len(tasks_class) task_type = task_defs.task_type_map[prefix] dopt = generate_decoder_opt(task_defs.enable_san_map[prefix], opt['answer_opt']) if task_id < len(decoder_opts): decoder_opts[task_id] = min(decoder_opts[task_id], dopt) else: decoder_opts.append(dopt) task_types.append(task_type) loss_types.append(task_defs.loss_map[prefix]) kd_loss_types.append(task_defs.kd_loss_map[prefix]) if prefix not in tasks: tasks[prefix] = len(tasks) if args.mtl_opt < 1: nclass_list.append(nclass) if (nclass not in tasks_class): tasks_class[nclass] = len(tasks_class) if args.mtl_opt > 0: nclass_list.append(nclass) dropout_p = task_defs.dropout_p_map.get(prefix, args.dropout_p) dropout_list.append(dropout_p) train_path = os.path.join(data_dir, '{}_train.json'.format(dataset)) logger.info('Loading {} as task {}'.format(train_path, task_id)) # train_data_set = SingleTaskDataset(train_path, True, maxlen=args.max_seq_len, task_id=task_id, # task_type=task_type, data_type=data_type) # train_datasets.append(train_data_set) #train_collater = Collater(dropout_w=args.dropout_w, encoder_type=encoder_type) # multi_task_train_dataset = MultiTaskDataset(train_datasets) # multi_task_batch_sampler = MultiTaskBatchSampler(train_datasets, args.batch_size, args.mix_opt, args.ratio) # multi_task_train_data = DataLoader(multi_task_train_dataset, batch_sampler=multi_task_batch_sampler, # collate_fn=train_collater.collate_fn, pin_memory=args.cuda) opt['answer_opt'] = decoder_opts opt['task_types'] = task_types opt['tasks_dropout_p'] = dropout_list opt['loss_types'] = loss_types opt['kd_loss_types'] = kd_loss_types args.label_size = ','.join([str(l) for l in nclass_list]) logger.info(args.label_size) dev_data_list = [] test_data_list = [] test_collater = Collater(is_train=False, encoder_type=encoder_type) logger.info('#' * 20) logger.info(opt) logger.info('#' * 20) bert_model_path = 'checkpoints/my_mnli/model_0.pt' state_dict = None if encoder_type == EncoderModelType.BERT: if os.path.exists(bert_model_path): state_dict = torch.load(bert_model_path, map_location=torch.device('cpu')) config = state_dict['config'] config['attention_probs_dropout_prob'] = args.bert_dropout_p config['hidden_dropout_prob'] = args.bert_dropout_p config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) else: logger.error('#' * 20) logger.error('Could not find the init model!\n The parameters will be initialized randomly!') logger.error('#' * 20) config = BertConfig(vocab_size_or_config_json_file=30522).to_dict() config['multi_gpu_on'] = opt["multi_gpu_on"] opt.update(config) elif encoder_type == EncoderModelType.ROBERTA: bert_model_path = '{}/model.pt'.format(bert_model_path) if os.path.exists(bert_model_path): new_state_dict = {} state_dict = torch.load(bert_model_path) for key, val in state_dict['model'].items(): if key.startswith('decoder.sentence_encoder'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val elif key.startswith('classification_heads'): key = 'bert.model.{}'.format(key) new_state_dict[key] = val state_dict = {'state': new_state_dict} model = MTDNNModel(opt, state_dict=state_dict) if args.resume and args.model_ckpt: logger.info('loading model from {}'.format(args.model_ckpt)) model.load(args.model_ckpt) #### model meta str headline = '############# Model Arch of MT-DNN #############' ### print network logger.info('\n{}\n{}\n'.format(headline, model.network)) # dump config config_file = os.path.join(output_dir, 'config.json') with open(config_file, 'w', encoding='utf-8') as writer: writer.write('{}\n'.format(json.dumps(opt))) writer.write('\n{}\n{}\n'.format(headline, model.network)) logger.info("Total number of params: {}".format(model.total_param)) # # tensorboard # if args.tensorboard: # args.tensorboard_logdir = os.path.join(args.output_dir, args.tensorboard_logdir) # tensorboard = SummaryWriter(log_dir=args.tensorboard_logdir) tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
def main(): parser = argparse.ArgumentParser() model_config(parser) set_config(parser) train_config(parser) args = parser.parse_args() encoder_type = args.encoder_type layer_indexes = [int(x) for x in args.layers.split(",")] set_environment(args.seed) # process data data, is_single_sentence = process_data(args) data_type = (DataFormat.PremiseOnly if is_single_sentence else DataFormat.PremiseAndOneHypothesis) fout_temp = "{}.tmp".format(args.finput) dump_data(data, fout_temp) collater = Collater(is_train=False, encoder_type=encoder_type) dataset = SingleTaskDataset( fout_temp, False, maxlen=args.max_seq_length, ) batcher = DataLoader( dataset, batch_size=args.batch_size, collate_fn=collater.collate_fn, pin_memory=args.cuda, ) opt = vars(args) # load model if os.path.exists(args.checkpoint): state_dict = torch.load(args.checkpoint) config = state_dict["config"] config["dump_feature"] = True opt.update(config) else: logger.error("#" * 20) logger.error( "Could not find the init model!\n The parameters will be initialized randomly!" ) logger.error("#" * 20) return num_all_batches = len(batcher) model = MTDNNModel(opt, state_dict=state_dict, num_train_step=num_all_batches) if args.cuda: model.cuda() features_dict = {} for batch_meta, batch_data in batcher: batch_meta, batch_data = Collater.patch_data(args.cuda, batch_meta, batch_data) all_encoder_layers, _ = model.extract(batch_meta, batch_data) embeddings = [ all_encoder_layers[idx].detach().cpu().numpy() for idx in layer_indexes ] uids = batch_meta["uids"] masks = batch_data[batch_meta["mask"]].detach().cpu().numpy().tolist() for idx, uid in enumerate(uids): slen = sum(masks[idx]) features = {} for yidx, layer in enumerate(layer_indexes): features[layer] = str(embeddings[yidx][idx][:slen].tolist()) features_dict[uid] = features # save features with open(args.foutput, "w", encoding="utf-8") as writer: for sample in data: uid = sample["uid"] feature = features_dict[uid] feature["uid"] = uid writer.write("{}\n".format(json.dumps(feature)))
def compute_heads_importance(args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False, verbose=True): """This method shows how to compute: - head attention entropy - head importance scores according to http://arxiv.org/abs/1905.10650 """ # Prepare our tensors device = torch.device("cuda" if args['cuda'] else "cpu") n_layers = model.mnetwork.module.bert.config.num_hidden_layers n_heads = model.mnetwork.module.bert.config.num_attention_heads head_importance = torch.zeros(n_layers, n_heads).to(device) attn_entropy = torch.zeros(n_layers, n_heads).to(device) if head_mask is None: head_mask = torch.ones(n_layers, n_heads).to(device) head_mask.requires_grad_(requires_grad=True) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: head_mask = None preds = None labels = None tot_tokens = 0.0 for batch_meta, batch_data in tqdm(eval_dataloader): for i in range(len(batch_data[1])): batch_data[1][i] = batch_data[1][i].to(device) y = batch_data[batch_meta['label']] y = model._to_cuda(y) # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) batch_meta, batch_data = Collater.patch_data(device, batch_meta, batch_data) logits, attention = model.update(batch_meta, batch_data, head_mask=head_mask) if compute_entropy: for layer, attn in enumerate(attention): masked_entropy = entropy(attn.detach()) * batch_data[ batch_meta['mask']].float().unsqueeze(1) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() # Also store our logits/labels if we want to compute metrics afterwards if preds is None: preds = logits.detach().cpu().numpy() labels = y.detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) labels = np.append(labels, y.detach().cpu().numpy(), axis=0) tot_tokens += batch_data[ batch_meta['mask']].float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args['dont_normalize_importance_by_layer']: exponent = 2 norm_by_layer = torch.pow( torch.pow(head_importance, exponent).sum(-1), 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args['dont_normalize_global_importance']: head_importance = (head_importance - head_importance.min()) / ( head_importance.max() - head_importance.min()) # Print/save matrices np.save(os.path.join(args['output_dir'], "attn_entropy.npy"), attn_entropy.detach().cpu().numpy()) np.save(os.path.join(args['output_dir'], "head_importance.npy"), head_importance.detach().cpu().numpy()) if verbose: print("Attention entropies") print_2d_tensor(attn_entropy) print("Head importance scores") print_2d_tensor(head_importance) print("Head ranked by importance scores") head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=device) head_ranks[head_importance.view(-1).sort( descending=True)[1]] = torch.arange(head_importance.numel(), device=device) head_ranks = head_ranks.view_as(head_importance) if verbose: print_2d_tensor(head_ranks) return attn_entropy, head_importance, preds, labels
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--task_def", type=str, required=True, default="experiments/glue/glue_task_def.yml") parser.add_argument("--task", type=str, required=True) parser.add_argument("--task_id", type=int, default=0, help="the id of this task when training") parser.add_argument("--checkpoint", default='mt_dnn_models/bert_model_base_uncased.pt', type=str) parser.add_argument( "--output_dir", default= '/content/gdrive/My Drive/Colab Notebooks/cs99/mt-dnn/checkpoints/bert-cased_lcp-single_2020-12-23T2029/', type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--prep_input", default= '/content/gdrive/My Drive/Colab Notebooks/cs99/mt-dnn/data_complex/bert_base_cased/lcp_dev.json', type=str, required=True, ) parser.add_argument( '--bert_model_type', default='bert-base-cased', type=str, help="What type of bert model should we be using", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help= "Pretrained config name or path if not the same as model_name_or_path", ) parser.add_argument( "--tokenizer_name", default="", type=str, help= "Pretrained tokenizer name or path if not the same as model_name_or_path", ) parser.add_argument( "--cache_dir", default=None, type=str, help= "Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances.") parser.add_argument("--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory") parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument("--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers") parser.add_argument( "--dont_normalize_global_importance", action="store_true", help="Don't normalize all importance scores between 0 and 1", ) parser.add_argument( "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy.") parser.add_argument( "--masking_threshold", default=0.9, type=float, help= "masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", ) parser.add_argument( "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step.") parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded.", ) # temp fix: technically these parameters should've already bin in checkpoint's config... parser.add_argument("--world_size", type=int, default=1, help="For distributed training: world size") parser.add_argument("--batch_size", default=8, type=int, help="Batch size.") parser.add_argument("--seed", type=int, default=2018) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--cuda', type=bool, default=torch.cuda.is_available(), help='whether to use GPU acceleration.') parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--do_proper", type=str, default=False, help="Can be used for distant debugging.") parser.add_argument("--do_improper", type=str, default=False, help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup devices and distributed training device = torch.device("cuda") if args.local_rank > -1: device = initialize_distributed(args) elif torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") # load task info task = args.task task_defs = TaskDefs(args.task_def) assert args.task in task_defs._task_type_map assert args.task in task_defs._data_type_map assert args.task in task_defs._metric_meta_map prefix = task.split('_')[0] task_def = task_defs.get_task_def(prefix) data_type = task_defs._data_type_map[args.task] task_type = task_defs._task_type_map[args.task] metric_meta = task_defs._metric_meta_map[args.task] # load model checkpoint_path = args.checkpoint assert os.path.exists(checkpoint_path) if args.cuda: state_dict = torch.load(checkpoint_path) else: state_dict = torch.load(checkpoint_path, map_location="cpu") opt = state_dict['config'] args.bin_on = False opt.update(vars(args)) model = MTDNNModel(opt, device=device, state_dict=state_dict) # Load pretrained model and tokenizer # Load data data = pd.read_csv('data_complex/lcp_test.tsv', sep='\t', header=None, names=['idx', 'complexity', 'sentence', 'token']) data['complexity'] = np.load( '/content/gdrive/My Drive/Colab Notebooks/cs99/from_macbook/single_test_labels.npy' ) data['class'] = pd.cut(data['complexity'], labels=[1, 2, 3, 4, 5], bins=[0, 0.2, 0.4, 0.6, 0.8, 1], include_lowest=True) data['sent_len'] = data['sentence'].str.len() with open( '/content/gdrive/My Drive/Colab Notebooks/cs99/new-mt-dnn/checkpoints/bert-cased_lcp-single_2021-01-19T0309/lcp_test_scores_epoch_4.json', 'r') as file: single_dev_bert_scores = json.load(file) data['finetuned_complexity'] = single_dev_bert_scores['scores'] data['finetuned_error'] = data['finetuned_complexity'] - data[ 'complexity'] data['finetuned_abs_error'] = (data['finetuned_complexity'] - data['complexity']).abs() with open( '/content/gdrive/My Drive/Colab Notebooks/cs99/new-mt-dnn/checkpoints/bert-cased_lcp-single_2021-01-19T0309/pretrained.json', 'r') as file: single_dev_bert_scores = json.load(file) data['pretrained_complexity'] = single_dev_bert_scores['scores'] data['pretrained_error'] = data['pretrained_complexity'] - data[ 'complexity'] data['pretrained_abs_error'] = (data['pretrained_complexity'] - data['complexity']).abs() data['improvement'] = data['pretrained_abs_error'] - data[ 'finetuned_abs_error'] data['proper'] = data['token'].apply(lambda x: x[0].isupper()) # Distributed training: # download model & vocab. printable = opt['local_rank'] in [-1, 0] encoder_type = opt.get('encoder_type', EncoderModelType.BERT) collater = Collater(is_train=True, encoder_type=encoder_type, max_seq_len=opt['max_seq_len'], do_padding=opt['do_padding']) dev_data = SingleTaskDataset(opt['prep_input'], True, maxlen=opt['max_seq_len'], task_id=opt['task_id'], task_def=task_def, printable=printable) if args.do_proper: dev_data._data = np.array( dev_data._data)[data[data['proper']]['idx'].to_numpy()].tolist() if args.do_improper: dev_data._data = np.array( dev_data._data)[data[~data['proper']]['idx'].to_numpy()].tolist() dev_data_loader = DataLoader(dev_data, batch_size=opt['batch_size_eval'], collate_fn=collater.collate_fn, pin_memory=opt['cuda']) # Compute head entropy and importance score results = [] for seed in tqdm(range(2010 + 1, 2020 + 1)): # Set seeds set_seed(seed) attn_entropy, head_importance, preds, labels = compute_heads_importance( opt, model, dev_data_loader) results.append((attn_entropy, head_importance)) pkl.dump( results, open('checkpoints/bert-cased_lcp-single_2021-01-19T0309/results.pkl', 'wb')) # Try head masking (set heads to zero until the score goes under a threshold) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: head_mask = mask_heads(opt, model, dev_data_loader)
def main(): task_def_path = 'data_complex/lcp.yml' task = os.path.splitext(os.path.basename(task_def_path))[0] task_defs = TaskDefs(task_def_path) prefix = task.split('_')[0] task_def = task_defs.get_task_def(prefix) parser = argparse.ArgumentParser() model_config(parser) set_config(parser) train_config(parser) args = parser.parse_args() encoder_type = args.encoder_type layer_indexes = [int(x) for x in args.layers.split(",")] set_environment(args.seed) # process data data, is_single_sentence = process_data(args) data_type = DataFormat.PremiseOnly if is_single_sentence else DataFormat.PremiseAndOneHypothesis fout_temp = '{}.tmp'.format(args.finput) dump_data(data, fout_temp) collater = Collater(is_train=False, encoder_type=encoder_type) dataset = SingleTaskDataset(fout_temp, False, maxlen=args.max_seq_length, task_def=task_def)#, data_type=data_type) batcher = DataLoader(dataset, batch_size=args.batch_size, collate_fn=collater.collate_fn, pin_memory=args.cuda) opt = vars(args) # load model if os.path.exists(args.checkpoint): state_dict = torch.load(args.checkpoint) config = state_dict['config'] config['dump_feature'] = True config['local_rank'] = -1 opt.update(config) else: logger.error('#' * 20) logger.error( 'Could not find the init model!\n The parameters will be initialized randomly!') logger.error('#' * 20) return num_all_batches = len(batcher) model = MTDNNModel( opt, state_dict=state_dict, num_train_step=num_all_batches) if args.cuda: model.cuda() features_dict = {} for batch_meta, batch_data in batcher: batch_meta, batch_data = Collater.patch_data(args.cuda, batch_meta, batch_data) all_encoder_layers, _ = model.extract(batch_meta, batch_data) embeddings = [all_encoder_layers[idx].detach().cpu().numpy() for idx in layer_indexes] #import pdb; pdb.set_trace() uids = batch_meta['uids'] masks = batch_data[batch_meta['mask']].detach().cpu().numpy().tolist() for idx, uid in enumerate(uids): slen = sum(masks[idx]) features = {} for yidx, layer in enumerate(layer_indexes): features[layer] = str(embeddings[yidx][idx][:slen].tolist()) features_dict[uid] = features # save features with open(args.foutput, 'w', encoding='utf-8') as writer: for sample in data: uid = sample['uid'] tokens = sample['tokens'] feature = features_dict[uid] feature['tokens'] = tokens feature['uid'] = uid writer.write('{}\n'.format(json.dumps(feature)))