class DefaultPipeline: """The biomedicus default pipeline for processing clinical documents. Attributes events_client (mtap.EventsClient): An MTAP events client used by the pipeline. pipeline (mtap.Pipeline): An MTAP pipeline to use to process documents. """ def __init__(self, conf: PipelineConf, *, events_client: EventsClient = None): conf.populate_addresses() if events_client is not None: self.close_client = False self.events_client = events_client elif conf.events_address is not None: self.close_client = True self.events_client = EventsClient(address=conf.events_address) else: raise ValueError("Events client or address not specified.") pipeline = [ (conf.sentences_id, conf.sentences_address), (conf.section_headers_id, conf.section_headers_address), (conf.tagger_id, conf.tagger_address), (conf.acronyms_id, conf.acronyms_address), (conf.concepts_id, conf.concepts_address), (conf.negation_id, conf.negation_address), (conf.selective_dependencies_id, conf.selective_dependencies_address), (conf.deepen_id, conf.deepen_address) ] if conf.use_discovery: self.pipeline = Pipeline( *[RemoteProcessor(identifier) for identifier, _ in pipeline] ) else: self.pipeline = Pipeline( *[RemoteProcessor(identifier, address=addr) for identifier, addr in pipeline] ) if conf.serializer is not None: serialization_proc = SerializationProcessor(get_serializer(conf.serializer), conf.output_directory, include_label_text=conf.include_label_text) ser_comp = LocalProcessor(serialization_proc, component_id='serializer', client=self.events_client) self.pipeline.append(ser_comp) def process_text(self, text: str, *, event_id: str = None) -> ProcessingResult: with Event(event_id=event_id, client=self.events_client) as event: document = event.create_document('plaintext', text=text) f = self.pipeline.run(document) return f def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.pipeline.close() if self.close_client: self.events_client.close()
class DefaultPipeline: """The biomedicus default pipeline for processing clinical documents. Attributes events_client (mtap.EventsClient): An MTAP events client used by the pipeline. pipeline (mtap.Pipeline): An MTAP pipeline to use to process documents. """ def __init__(self, conf_path: Union[str, Path], output_directory: Union[str, Path], *, events_address: Optional[str] = None, events_client: EventsClient = None, serializer: Optional[str] = None, include_label_text: bool = False): if events_address == 'None' or events_address == 'none' or events_address == 'null' or events_address == '': events_address = None if events_client is not None: self.close_client = False self.events_client = events_client else: self.close_client = True self.events_client = EventsClient(address=events_address) self.pipeline = Pipeline.from_yaml_file(conf_path) if serializer == 'None': serializer = None if serializer is not None: serialization_proc = SerializationProcessor( get_serializer(serializer), output_directory, include_label_text=include_label_text) ser_comp = LocalProcessor(serialization_proc, component_id='serializer', client=self.events_client) self.pipeline.append(ser_comp) def process_text(self, text: str, *, event_id: str = None) -> ProcessingResult: with Event(event_id=event_id, client=self.events_client) as event: document = event.create_document('plaintext', text=text) f = self.pipeline.run(document) return f def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.pipeline.close() if self.close_client: self.events_client.close()
class DefaultPipeline: def __init__(self, conf: DefaultPipelineConf, *, events_client: EventsClient = None): if events_client is not None: self.close_client = False self.events_client = events_client elif conf.events_address is not None: self.close_client = True self.events_client = EventsClient(address=conf.events_address) else: raise ValueError("Events client or address not specified.") pipeline = [(conf.sentences_id, conf.sentences_address), (conf.tagger_id, conf.tagger_address), (conf.acronyms_id, conf.acronyms_address), (conf.concepts_id, conf.concepts_address), (conf.negation_id, conf.negation_address)] if conf.use_discovery: self.pipeline = Pipeline( *[RemoteProcessor(identifier) for identifier, _ in pipeline], n_threads=conf.threads) else: self.pipeline = Pipeline(*[ RemoteProcessor(identifier, address=addr) for identifier, addr in pipeline ], n_threads=conf.threads) if conf.serializer is not None: serialization_proc = SerializationProcessor( get_serializer(conf.serializer), conf.output_directory, include_label_text=conf.include_label_text) ser_comp = LocalProcessor(serialization_proc, component_id='serializer', client=self.events_client) self.pipeline.append(ser_comp) def process_text(self, text: str, *, event_id: str = None) -> ProcessingResult: with Event(event_id=event_id, client=self.events_client) as event: document = event.create_document('plaintext', text=text) f = self.pipeline.run(document) return f def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.pipeline.close() if self.close_client: self.events_client.close()
class DefaultPipeline: """The biomedicus default pipeline for processing clinical documents. Attributes events_client (mtap.EventsClient): An MTAP events client used by the pipeline. pipeline (mtap.Pipeline): An MTAP pipeline to use to process documents. """ def __init__(self, conf: PipelineConf, *, events_client: EventsClient = None): conf.populate_addresses() if events_client is not None: self.close_client = False self.events_client = events_client elif conf.events_address is not None: self.close_client = True self.events_client = EventsClient(address=conf.events_address) else: raise ValueError("Events client or address not specified.") pipeline = [(conf.sentences_id, conf.sentences_address), (conf.tagger_id, conf.tagger_address)] if conf.use_discovery: self.pipeline = Pipeline( *[RemoteProcessor(identifier) for identifier, _ in pipeline]) else: self.pipeline = Pipeline(*[ RemoteProcessor(identifier, address=addr) for identifier, addr in pipeline ]) def process_text(self, text: str, *, event_id: str = None) -> ProcessingResult: with Event(event_id=event_id, client=self.events_client) as event: document = event.create_document('plaintext', text=text) f = self.pipeline.run(document) return f def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.pipeline.close() if self.close_client: self.events_client.close()
class Pipeline(MutableSequence['processing.ComponentDescriptor']): """An object which can be used to build and run a pipeline of remote and local processors. Pipelines are a :obj:`~typing.MutableSequence` containing one or more :obj:`~mtap.processing.pipeline.ComponentDescriptor`, a pipeline can be modified after creation using this functionality. Args: *components (ComponentDescriptor): A list of component descriptors created using :class:`RemoteProcessor` or :class:`LocalProcessor`. Keyword Args: name (~typing.Optional[str]): An optional name for the pipeline, defaults to 'pipeline'. config (~typing.Optional[Config]): An optional config override. Examples: Remote pipeline with name discovery: >>> with mtap.Events() as events, mtap.Pipeline( >>> RemoteProcessor('processor-1-id'), >>> RemoteProcessor('processor-2-id'), >>> RemoteProcessor('processor-3-id') >>> ) as pipeline: >>> for txt in txts: >>> with events.open_event() as event: >>> document = event.add_document('plaintext', txt) >>> results = pipeline.run(document) Remote pipeline using addresses: >>> with mtap.Events(address='localhost:50051') as events, mtap.Pipeline( >>> RemoteProcessor('processor-1-name', address='localhost:50052'), >>> RemoteProcessor('processor-2-id', address='localhost:50053'), >>> RemoteProcessor('processor-3-id', address='localhost:50054') >>> ) as pipeline: >>> for txt in txts: >>> event = events.open_event() >>> document = event.add_document('plaintext', txt) >>> results = pipeline.run(document) Modifying pipeline >>> pipeline = Pipeline(RemoteProcessor('foo', address='localhost:50000'), RemoteProcessor('bar', address='localhost:50000')) >>> pipeline Pipeline(RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='bar', address='localhost:50000', component_id=None, params=None)) >>> pipeline.append(RemoteProcessor('baz', address='localhost:50001')) >>> pipeline Pipeline(RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='bar', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='baz', address='localhost:50001', component_id=None, params=None)) >>> del pipeline[1] >>> pipeline Pipeline(RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='baz', address='localhost:50001', component_id=None, params=None)) >>> pipeline[1] = RemoteProcessor(processor_id='bar', address='localhost:50003') >>> pipeline Pipeline(RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='bar', address='localhost:50003', component_id=None, params=None)) >>> pipeline += list(pipeline) # Putting in a new list to prevent an infinite recursion >>> pipeline Pipeline(RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='bar', address='localhost:50003', component_id=None, params=None), RemoteProcessor(processor_id='foo', address='localhost:50000', component_id=None, params=None), RemoteProcessor(processor_id='bar', address='localhost:50003', component_id=None, params=None)) Attributes: name (str): The pipeline's name. """ __slots__ = [ '_component_ids', 'name', '_component_descriptors', 'events_address', 'mp_config', '_created_events_client', '_events_client', 'times_map', '__components' ] def __init__(self, *components: 'processing.ComponentDescriptor', name: Optional[str] = None, events_address: Optional[str] = None, events_client: Optional[EventsClient] = None, mp_config: Optional[MpConfig] = None): self._component_ids = {} self.name = name or 'pipeline' self._component_descriptors = list(components) self.events_address = events_address self._created_events_client = False self._events_client = None if events_client is not None: self.events_client = events_client self.mp_config = mp_config or MpConfig() self.times_map = {} def __reduce__(self): return _create_pipeline, (self.name, self.events_address, self._events_client, self.mp_config) + tuple( self._component_descriptors) @staticmethod def from_yaml_file(conf_path: Union[pathlib.Path, str]) -> 'Pipeline': """Creates a pipeline from a yaml pipeline configuration file. Args: conf_path (str or pathlib.Path): The path to the configuration file. Returns: Pipeline object from the configuration. """ conf_path = pathlib.Path(conf_path) from yaml import load try: from yaml import CLoader as Loader except ImportError: from yaml import Loader with conf_path.open('rb') as f: conf = load(f, Loader=Loader) return Pipeline.load_configuration(conf) @staticmethod def load_configuration(conf: Dict) -> 'Pipeline': """Creates a pipeline from a pipeline configuration dictionary. Args: conf (Dict): The pipeline configuration dictionary. Returns: Pipeline created from the configuration. """ name = conf.get('name', None) events_address = conf.get('events_address', None) or conf.get( 'events_addresses', None) components = [] conf_components = conf.get('components', []) for conf_component in conf_components: components.append( RemoteProcessor(processor_id=conf_component['processor_id'], address=conf_component['address'], component_id=conf_component.get( 'component_id', None), params=dict(conf_component.get('params', {})))) mp_config = MpConfig.from_configuration(conf.get('mp_config', {})) return Pipeline(*components, name=name, events_address=events_address, mp_config=mp_config) @property def events_client(self) -> EventsClient: if self._events_client is not None: return self._events_client self._created_events_client = True self._events_client = EventsClient(address=self.events_address) return self._events_client @events_client.setter def events_client(self, value: EventsClient): self._events_client = value @property def _components(self) -> 'List[processing.ProcessingComponent]': try: return self.__components except AttributeError: self.__components = [ desc.create_pipeline_component(self._component_ids, lambda: self.events_client) for desc in self._component_descriptors ] return self.__components @_components.deleter def _components(self): for component in self.__components: component.close() del self.__components def run_multithread(self, source: Union[Iterable[Union['mtap.Document', 'mtap.Event']], 'processing.ProcessingSource'], *, params: Optional[Dict[str, Any]] = None, show_progress: Optional[bool] = None, total: Optional[int] = None, close_events: Optional[bool] = None, max_failures: Optional[int] = None, workers: Optional[int] = None, read_ahead: Optional[int] = None, mp_context=None): """Runs this pipeline on a source which provides multiple documents / events. Concurrency is per-event, with each event being provided a thread which runs it through the pipeline. Args: source (~typing.Union[~typing.Iterable[~typing.Union[Event, Document]], ProcessingSource]) A generator of events or documents to process. This should be an :obj:`~typing.Iterable` of either :obj:`Event` or :obj:`Document` objects or a :obj:`~mtap.processing.ProcessingSource`. params (~typing.Optional[dict[str, ~typing.Any]]) Json object containing params specific to processing this event, the existing params dictionary defined in :func:`~PipelineBuilder.add_processor` will be updated with the contents of this dict. show_progress (~typing.Optional[bool]) Whether to print a progress bar using tqdm. total (~typing.Optional[int]) An optional argument indicating the total number of events / documents that will be provided by the iterable, for the progress bar. close_events (~typing.Optional[bool]) Whether the pipeline should close events after they have been fully processed through all components. max_failures (~typing.Optional[int]) The number of acceptable failures. Once this amount is exceeded processing will halt. Note that because of the nature of conccurrency processing may continue for a short amount of time before termination. workers (~typing.Optional[int]) The number of threads to process documents on. read_ahead (~typing.Optional[int]) The number of source documents to read ahead into memory before processing. mp_context (multiprocessing context, optional) An optional override for the multiprocessing context. Examples: >>> docs = list(Path('abc/').glob('*.txt')) >>> def document_source(): >>> for path in docs: >>> with path.open('r') as f: >>> txt = f.read() >>> with Event(event_id=path.name, client=client) as event: >>> doc = event.create_document('plaintext', txt) >>> yield doc >>> >>> pipeline.run_multithread(document_source(), total=len(docs)) """ show_progress = show_progress if show_progress is not None else self.mp_config.show_progress close_events = close_events if close_events is not None else self.mp_config.close_events max_failures = max_failures if max_failures is not None else self.mp_config.max_failures workers = workers if workers is not None else self.mp_config.workers mp_context = (multiprocessing.get_context( self.mp_config.mp_start_method) if mp_context is None else mp_context) read_ahead = read_ahead if read_ahead is not None else self.mp_config.read_ahead with _PipelineMultiRunner(self, source, params, show_progress, total, close_events, max_failures, workers, read_ahead, mp_context) as runner: runner.run() def run( self, target: Union['mtap.Event', 'mtap.Document'], *, params: Optional[Dict[str, Any]] = None) -> 'processing.PipelineResult': """Processes the event/document using all of the processors in the pipeline. Args: target (~typing.Union[Event, Document]): Either an event or a document to process. params (dict[str, ~typing.Any]): Json object containing params specific to processing this event, the existing params dictionary defined in :func:`~PipelineBuilder.add_processor` will be updated with the contents of this dict. Returns: list[ProcessingResult]: The results of all the processors in the pipeline. Examples: >>> e = mtap.Event() >>> document = mtap.Document('plaintext', text="...", event=e) >>> with Pipeline(...) as pipeline: >>> pipeline.run(document) >>> # is equivalent to pipeline.run(document.event, params={'document_name': document.document_name}) The 'document_name' param is used to indicate to :obj:`~mtap.DocumentProcessor` which document on the event to process. """ event, params = _event_and_params(target, params) event_id = event.event_id result = self._run_by_event_id(event_id, event.event_service_instance_id, params) self._add_result_times(result) for component_result in result.component_results: try: event.add_created_indices(component_result.created_indices) except AttributeError: pass return result def _run_by_event_id(self, event_id, event_service_instance_id, params): start = datetime.now() results = [ component.call_process(event_id, event_service_instance_id, params) for component in self._components ] total = datetime.now() - start results = [ _base.ProcessingResult(identifier=component.component_id, result_dict=result[0], timing_info=result[1], created_indices=result[2]) for component, result in zip(self._components, results) ] logger.debug('Finished processing event_id: %s', event_id) return _base.PipelineResult(results, total) def _add_result_times(self, result): times = {} for component_id, _, component_times, _ in result.component_results: times.update({ component_id + ':' + k: v for k, v in component_times.items() }) times[self.name + 'total'] = result.elapsed_time _timing.add_times(self.times_map, times) @overload def processor_timer_stats(self) -> 'List[processing.AggregateTimingInfo]': """Returns the timing information for all processors. Returns: List[AggregateTimingInfo]: A list of timing info objects, one for each processor, in the same order that the processors were added to the pipeline. """ ... @overload def processor_timer_stats( self, identifier: str) -> 'processing.AggregateTimingInfo': """Returns the timing info for one processor. Args: identifier (Optional[str]): The pipeline component_id for the processor to return timing info. Returns: AggregateTimingInfo: The timing info for the specified processor. """ ... def processor_timer_stats(self, identifier=None): if identifier is not None: aggregates = _timing.create_timer_stats(self.times_map, identifier + ':') aggregates = { k[(len(identifier) + 1):]: v for k, v in aggregates.items() } return _base.AggregateTimingInfo(identifier=identifier, timing_info=aggregates) timing_infos = [] for component in self._components: component_id = component.component_id aggregates = _timing.create_timer_stats(self.times_map, component_id + ':') aggregates = { k[(len(component_id) + 1):]: v for k, v in aggregates.items() } timing_infos.append( _base.AggregateTimingInfo(identifier=component_id, timing_info=aggregates)) return timing_infos def pipeline_timer_stats(self) -> 'processing.AggregateTimingInfo': """The aggregated statistics for the global runtime of the pipeline. Returns: AggregateTimingInfo: The timing stats for the global runtime of the pipeline. """ pipeline_id = self.name aggregates = _timing.create_timer_stats(self.times_map, pipeline_id) aggregates = {k[len(pipeline_id):]: v for k, v in aggregates.items()} return _base.AggregateTimingInfo(identifier=self.name, timing_info=aggregates) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): """Closes any open connections to remote processors. """ for component in self._components: try: component.close() except AttributeError: pass if self._created_events_client: self._events_client.close() def as_processor(self) -> 'processing.EventProcessor': """Returns the pipeline as a processor. Returns: EventProcessor: An event processor that can be added to other pipelines or hosted. """ return _PipelineProcessor(self._components) def print_times(self): """Prints all of the times collected during this pipeline using :func:`print`. """ self.pipeline_timer_stats().print_times() for pipeline_timer in self.processor_timer_stats(): pipeline_timer.print_times() def __getitem__(self, item): return self._component_descriptors[item] def __setitem__(self, key, value): self._clear_components() self._component_descriptors[key] = value def __delitem__(self, key): self._clear_components() del self._component_descriptors[key] def __len__(self): return len(self._component_descriptors) def _clear_components(self): try: del self._components except AttributeError: pass def insert(self, index, o) -> None: self._clear_components() self._component_descriptors.insert(index, o) def __repr__(self): return "Pipeline(" + ', '.join( [repr(component) for component in self._component_descriptors]) + ')'