def test_onet(self): onet = mtcnn.ONet().to_script() data = torch.randn(100, 3, 48, 48) det, box, landmarks = onet(data) self.assertEqual(list(det.shape), [100, 2]) self.assertEqual(list(box.shape), [100, 4]) self.assertEqual(list(landmarks.shape), [100, 10])
def get_net(): """ Create pnet, rnet, onet for detector. """ pnet = mtcnn_pytorch.PNet() rnet = mtcnn_pytorch.RNet() onet = mtcnn_pytorch.ONet() return pnet, rnet, onet
def test_load_caffe_model(self): pnet = mtcnn.PNet() rnet = mtcnn.RNet() onet = mtcnn.ONet() weight_folder = os.path.join(here, '../output/converted') pnet.load_caffe_model( np.load(os.path.join(weight_folder, 'pnet.npy'))[()]) rnet.load_caffe_model( np.load(os.path.join(weight_folder, 'rnet.npy'))[()]) onet.load_caffe_model( np.load(os.path.join(weight_folder, 'onet.npy'))[()])
def test_onet(self): onet = mtcnn.ONet(is_train=True) data = torch.randn(100, 3, 48, 48) det, box, landmarks = onet(data) self.assertEqual(list(det.shape), [100, 2]) self.assertEqual(list(box.shape), [100, 4]) self.assertEqual(list(landmarks.shape), [100, 10]) onet.get_loss(data, torch.ones(100, dtype=torch.int64), torch.randn(100, 4), torch.randn(100, 10))
def get_net(weight_folder=None): """ Create pnet, rnet, onet for detector. """ pnet = mtcnn_pytorch.PNet() rnet = mtcnn_pytorch.RNet() onet = mtcnn_pytorch.ONet() if weight_folder is not None: pnet.load(os.path.join(weight_folder, 'pnet')) rnet.load(os.path.join(weight_folder, 'rnet')) onet.load(os.path.join(weight_folder, 'onet')) return pnet, rnet, onet
def setUp(self): weight_folder = os.path.join(here, '../output/converted') pnet = mtcnn.PNet() rnet = mtcnn.RNet() onet = mtcnn.ONet() pnet.load_caffe_model( np.load(os.path.join(weight_folder, 'pnet.npy'))[()]) rnet.load_caffe_model( np.load(os.path.join(weight_folder, 'rnet.npy'))[()]) onet.load_caffe_model( np.load(os.path.join(weight_folder, 'onet.npy'))[()]) self.detector = detect.FaceDetector(pnet, rnet, onet, "cuda:0") self.test_img = os.path.join(here, 'asset/images/office5.jpg')
def setUp(self): self.test_video = os.path.join(here, './asset/video/school.avi') weight_folder = os.path.join(here, '../output/converted') pnet = mtcnn.PNet() rnet = mtcnn.RNet() onet = mtcnn.ONet() pnet.load_caffe_model( np.load(os.path.join(weight_folder, 'pnet.npy'))[()]) rnet.load_caffe_model( np.load(os.path.join(weight_folder, 'rnet.npy'))[()]) onet.load_caffe_model( np.load(os.path.join(weight_folder, 'onet.npy'))[()]) self.detector = FaceDetector(pnet, rnet, onet) self.tracker = FaceTracker(self.detector)