コード例 #1
0
ファイル: embeddings.py プロジェクト: jedivova/FaceDetector
def get_models(mtcnn_w_path='mtcnn/weights'):
    # First we create pnet, rnet, onet, and load weights from caffe model.
    pnet, rnet, onet = mtcnn.get_net_caffe(mtcnn_w_path)

    # Then we create a detector
    detector = mtcnn.FaceDetector(pnet, rnet, onet, device='cpu')

    embedder = insightface.iresnet100(pretrained=True)
    embedder.eval()

    return detector, embedder
コード例 #2
0
ファイル: main.py プロジェクト: RedShift51/face_embeddings
def main(img):
    # detect faces
    pnet, rnet, onet = mtcnn.get_net_caffe('output/converted')
    detector = mtcnn.FaceDetector(pnet, rnet, onet, device='cuda:0')
    #img = '../FaceDetector/tests/asset/images/office5.jpg'
    img = imread(img)
    boxes, landmarks = detector.detect(img)
    img = torch.tensor(img.astype(np.float32),
                       device=torch.device("cuda:0")).permute(2, 0, 1)

    # embed faces
    embedder = insightface.iresnet100(pretrained=True)
    embedder.eval()

    mean = [127.5] * 3  #[0.5] * 3
    std = [128.] * 3  #[0.5 * 256 / 255] * 3
    preprocess = transforms.Compose([transforms.Normalize(mean, std)])

    landmarks = landmarks.float()
    boxcpu = boxes.cpu().numpy()

    for f0 in range(boxcpu.shape[0]):
        angle = torch.atan2(landmarks[f0][1, 1] - landmarks[f0][0, 1], \
                            landmarks[f0][1, 0] - landmarks[f0][0, 0])# + np.pi/2
        local_patch = img[:, boxes[f0][1]:boxes[f0][3],
                          boxes[f0][0]:boxes[f0][2]].unsqueeze(0)
        local_patch = rot_img(local_patch, angle, \
                        [1./local_patch.shape[2]*\
                            (-0.5*(boxes[f0][2]+boxes[f0][0])+landmarks[f0][2, 0]), \
                         1./local_patch.shape[3]*\
                            (-0.5*(boxes[f0][3]+boxes[f0][1])+landmarks[f0][2, 1])], \
                        dtype=torch.cuda.FloatTensor)
        local_patch = local_patch.squeeze(0)

        tensor_face = F.interpolate(local_patch, size=112)
        tensor_face = tensor_face.permute(0, 2, 1)
        tensor_face = F.interpolate(tensor_face, size=112)
        tensor_face = tensor_face.permute(0, 2, 1)

        tensor_face = preprocess(tensor_face.cpu())
        with torch.no_grad():
            features = embedder(tensor_face.unsqueeze(0))[0].numpy()
            print(features)
コード例 #3
0

parser = argparse.ArgumentParser(description='this is a description')
parser.add_argument('--video_path', type=str, help="Read from video.")
parser.add_argument('--output_folder', type=str, help="Save the tracking result.")
parser.add_argument('--saved_path', type=str, default=None,
                    help="If set, Save as video. Or show it on screen.")
parser.add_argument("--minsize", type=int, default=24,
                    help="Min size of faces you want to detect. Larger number will speed up detect method.")
parser.add_argument('--min_interval', type=int, default=3, help="See FaceTracker.")
parser.add_argument("--device", type=str, default='cpu',
                    help="Target device to process video.")

args = parser.parse_args()

pnet, rnet, onet = mtcnn.get_net_caffe('output/converted')
detector = mtcnn.FaceDetector(pnet, rnet, onet, device=args.device)
tracker = mtcnn.FaceTracker(detector, min_interval=args.min_interval)
tracker.set_detect_params(minsize=args.minsize)

fourcc = cv2.VideoWriter_fourcc(*"XVID")

cap = cv2.VideoCapture(args.video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))

if args.saved_path is not None:
    out = cv2.VideoWriter(args.saved_path, fourcc, fps, size)

while True:
コード例 #4
0
 def setUp(self):
     self.dataset = get_by_name(DEFAULT_DATASET)
     self.output_folder = os.path.join(here, '../output/test')
     self.top = 100
     self.pnet, self.rnet, _ = get_net_caffe(
         os.path.join(here, '../output/converted'))
コード例 #5
0
ファイル: detector.py プロジェクト: MZHI/arcface-embedder
    def __init__(self):
        # First we create pnet, rnet, onet, and load weights from caffe model.
        pnet, rnet, onet = mtcnn.get_net_caffe('output/converted')

        # Then we create a detector
        self.__detector = mtcnn.FaceDetector(pnet, rnet, onet, device='cuda:0')