コード例 #1
0
ファイル: treebuilder.py プロジェクト: argriffing/khatrisvd
 def test_clusters_b(self):
     root = mtree.create_tree([[[0, [1, 2]], [3, [4, 5, 6]]],7])
     root = center_and_sort_tree(root)
     clusters = get_clusters(root)
     observed = set(frozenset(x) for x in clusters)
     expected = set(frozenset(x) for x in [[1,2],[0,1,2],[4,5,6],[0,1,2,7],[3,4,5,6]])
     self.assertEqual(expected, observed)
コード例 #2
0
ファイル: heatmap.py プロジェクト: argriffing/khatrisvd
 def test_dendrogram_imager(self):
     filename = 'dendrogram-test.png'
     root = mtree.create_tree([[0, [1, 2]], 3, [4, 5, 6]])
     imager = DendrogramImager(root)
     fout = open(filename, 'wb')
     imager.im.save(fout)
     fout.close()
コード例 #3
0
ファイル: dendro.py プロジェクト: argriffing/khatrisvd
 def test_dendrogram(self):
     root = mtree.create_tree([[0, [1, 2]], 3, [4, 5, 6]])
     # make a tall tree
     observed_tall_art = str(AsciiArt(root, draw_tall_dendrogram))
     self.assertEqual(observed_tall_art, g_expected_tall_art)
     # make a short tree
     observed_short_art = str(AsciiArt(root))
     self.assertEqual(observed_short_art, g_expected_short_art)
コード例 #4
0
ファイル: heatmap.py プロジェクト: argriffing/khatrisvd
 def test_heatmap_with_dendrogram(self):
     root = mtree.create_tree([[0, [1, 2]], 3, [4, 5, 6]])
     M = np.random.random((7, 7))
     R = np.corrcoef(M)
     # draw the correlation heatmap
     filename = 'r-test.png'
     f = gradient.correlation_to_rgb
     get_heatmap_with_dendrogram(R, root, f, filename)
     # draw the squared correlation heatmap
     filename = 'rr-test.png'
     RoR = R*R
     f = gradient.squared_correlation_to_rgb
     get_heatmap_with_dendrogram(RoR, root, f, filename)
コード例 #5
0
import mtree

example_hash_list = [
  "aa",
  "bb",
  "cc",
  "dd",
  "ee",
  "11",
  "22",
  "33",
  "44",
  "55"
  "66"
]
print(mtree.create_tree(example_hash_list))
コード例 #6
0
ファイル: treebuilder.py プロジェクト: argriffing/khatrisvd
 def test_center_and_sort_tree(self):
     root = mtree.create_tree([[[0, [1, 2]], 3, [4, 5, 6]],7])
     root = center_and_sort_tree(root)
     expected = set(frozenset(x) for x in [[0,1,2],[3],[7],[4,5,6]])
     observed = set(frozenset(get_label_set(c)) for c in root.children)
     self.assertEqual(expected, observed)
コード例 #7
0
ファイル: treebuilder.py プロジェクト: argriffing/khatrisvd
 def test_id_to_nlabels(self):
     root = mtree.create_tree([[[0, [1, 2]], 3, [4, 5, 6]],7])
     id_to_nlabels = build_id_to_nlabels(root, {})
     self.assertEqual(id_to_nlabels[id(root)], 8)
     child_nlabels = [id_to_nlabels[id(child)] for child in root.children]
     self.assertEqual(sum(child_nlabels), 8)
コード例 #8
0
ファイル: treebuilder.py プロジェクト: argriffing/khatrisvd
def build_tree_helper(boxed_U_in, S_in, ordered_labels, tree_data):
    """
    Get the root of an mtree reconstructed from the transformed data.
    The input matrix U will be freed (deleted) by this function.
    @param boxed_U_in: part of the laplacian sqrt obtained by svd
    @param S_in: another part of the laplacian sqrt obtained by svd
    @param ordered_labels: a list of labels conformant with rows of U
    @param tree_data: state whose scope is the construction of the tree
    @return: an mtree rooted at a degree 2 vertex unless the input matrix has 3 rows
    """
    # take U_in out of the box
    if len(boxed_U_in) != 1:
        raise ValueError('expected a 2d array as the only element of a list')
    U_in = boxed_U_in[0]
    shape = U_in.shape
    if len(shape) != 2:
        raise valueError('expected a 2d array as the only element of a list')
    p, n = shape
    if p < 3 or n < 3:
        raise ValueError('expected the input matrix to have at least three rows and columns')
    # look for an informative split
    index_split = None
    if p > 3:
        # the signs of v match the signs of the fiedler vector
        v = khorr.get_fiedler_vector(U_in, S_in)
        index_split = splitbuilder.eigenvector_to_split(v)
        # if the split is degenerate then don't use it
        if min(len(x) for x in index_split) < 2:
            index_split = None
    # if no informative split was found then create a degenerate tree
    if not index_split:
        root = mtree.create_tree(ordered_labels)
        for node in root.preorder():
            if node.has_label():
                tree_data.add_node(node)
        return root
    # get the indices defined by the split
    a, b = tuple(list(sorted(x)) for x in index_split)
    # Create two new matrices.
    # Be somewhat careful to not create lots of intermediate matrices
    A = np.zeros((len(a)+1, n))
    B = np.zeros((len(b)+1, n))
    for i, index in enumerate(a):
        A[i] = U_in[index] * S_in
    for i, index in enumerate(b):
        B[i] = U_in[index] * S_in
    A_outgroup = np.sum(B, 0)
    B_outgroup = np.sum(A, 0)
    A[-1] = A_outgroup
    B[-1] = B_outgroup
    # delete the two references to the old matrix
    del U_in
    del boxed_U_in[0]
    # recursively construct the subtrees
    subtrees = []
    stack = [[b,a,B], [a,b,A]]
    # delete non-stack references to partial matrices
    del A
    del B
    # process the partial matrices
    while stack:
        selection, complement, summed_L_sqrt = stack.pop()
        # record the outgroup label for this subtree
        outgroup_label = tree_data.decrement_outgroup_label()
        # create the ordered list of labels corresponding to leaves of the subtree
        next_ordered_labels = [ordered_labels[i] for i in selection]
        next_ordered_labels.append(outgroup_label)
        # get the criterion matrix for the next iteration
        U, S, VT = np.linalg.svd(summed_L_sqrt, full_matrices=0)
        del VT
        # delete matrices that are no longer useful
        del summed_L_sqrt
        # build the tree recursively
        boxed_U = [U]
        del U
        root = build_tree_helper(boxed_U, S, next_ordered_labels, tree_data)
        # if the root is degree 2 then remove the root node
        if root.degree() == 2:
            root = root.remove()
        # root the tree at the outgroup node
        root = tree_data.label_to_node[outgroup_label]
        root.reroot()
        # we don't need the outgroup label anymore
        tree_data.remove_node(root)
        # we can also remove the label from the outgroup node itself
        root.label = None
        # save the properly rooted subtree
        subtrees.append(root)
    # connect the two subtrees at their roots
    left_root, right_root = subtrees
    right_root = right_root.remove()
    left_root.add_child(right_root)
    return left_root