""" labels = ['A', 'B'] for ii, label in enumerate(labels): ax = panel_factory.new_panel(ii, 0, '' + labels[ii], label_position='leftleft') ax.yaxis.set_ticks_position('none') ax.xaxis.set_ticks_position('bottom') data = utils.load_iteration(ii + 1) (par_transition, r_low, r_high, minima_low, minima_high) = utils.determine_velocity_minima(time, data) unstable_low = r_low[:, minima_low[1]] matrix = np.zeros((len(area_list), 8)) for i, area in enumerate(area_list): mask = create_vector_mask(M_base.structure, areas=[area]) m = unstable_low[mask] if area == 'TH': m = np.insert(m, 2, 0.0) m = np.insert(m, 2, 0.0) matrix[i, :] = m[::-1] matrix = np.transpose(matrix) if ii == 0: rate_matrix_plot(panel_factory.figure, ax, matrix, position='left') else: rate_matrix_plot(panel_factory.figure, ax, matrix, position='right') """ Save figure """
for i in range(254): Npre[i] = num_vector Npost[:, i] = num_vector C = 1. - (1. - 1. / (Npre * Npost))**(M.K_matrix[:, :-1] * Npost) Nsyn = M.K_matrix[:, :-1] * Npost outdegree = Nsyn / Npre indegree = M.K_matrix[:, :-1] plot_areas = ['V1', 'V2'] mask = create_mask(M.structure, target_areas=plot_areas, source_areas=plot_areas, extern=False)[:, :-1] vmask = create_vector_mask(M.structure, areas=plot_areas) new_size = np.where(vmask)[0].size Nsyn_plot = Nsyn[mask].reshape((new_size, new_size)) C_plot = C[mask].reshape((new_size, new_size)) indegree_plot = indegree[mask].reshape((new_size, new_size)) outdegree_plot = outdegree[mask].reshape((new_size, new_size)) t_index = 0 ticks = [] ticks_r = [] for area in plot_areas: ticks.append(t_index + 0.5 * len(M.structure[area])) ticks_r.append(new_size - (t_index + 0.5 * len(M.structure[area]))) for pop in M.structure[area]: t_index += 1
print("Iteration 4: {}".format(np.sum(K_prime4 - K_prime3) / np.sum(K_prime3))) print("In total: {}".format(np.sum(K_prime4 - K_default) / np.sum(K_default))) data = {} for iteration in [1, 2, 3, 4, 5]: data[iteration] = utils.load_iteration(iteration) """ Panel A """ ax = panel_factory.new_panel(0, 0, 'A', label_position='leftleft') ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") mask = create_vector_mask(M_base.structure, pops=['5E', '6E']) for ii, iteration in enumerate([1, 2, 3, 4, 5]): pl.plot(data[iteration]['parameters'], np.mean(data[iteration]['results'][:, mask, -1], axis=1), '.-', color=str(ii / 6.)) ax.set_yscale('Log') ax.yaxis.set_minor_locator(pl.NullLocator()) ax.set_yticks(10**np.arange(-1., 3., 1.)) ax.yaxis.set_label_coords(-0.13, 0.55) ax.set_ylabel(r'$\langle \nu_{\{\mathrm{5E,6E}\}} \rangle$') ax.set_xlabel(r'$\kappa$', labelpad=-0.1) ax.set_xlim((1., 1.23)) """
""" ax = axes['F'] pos = ax.get_position() divider = make_axes_locatable(ax) ax_cb = pl.axes([pos.x1, pos.y0, 0.02, pos.y1 - pos.y0]) ax_cb.set_frame_on(False) ax_cb.set_xticks([]) ax_cb.set_yticks([]) critical_eigenvector = np.real(EV[1][:, np.argsort(np.real(EV[0]))[-1]]) r = vector_to_dict(critical_eigenvector, area_list, M.structure) ev_matrix = np.zeros((8, 32)) for i, area in enumerate(area_list): vm = create_vector_mask(M.structure, areas=[area]) r = critical_eigenvector[vm] if area == 'TH': r = np.insert(r, 2, np.zeros(2)) ev_matrix[:, i] = r ind = [list(area_list).index(area) for area in hierarchical_areas[::-1]] im = ax.pcolormesh(np.abs(ev_matrix[::-1][:, ind]), cmap=pl.get_cmap('inferno'), norm=LogNorm(vmin=1e-3, vmax=1e0)) area_string_F = area_list[ind][0] for area in area_list[ind][1:]: area_string_F += ' ' area_string_F += area