def test_mlp_model_output(self): folder_name, dataset_name, args = generate_dataset_and_parser() f = io.StringIO() with redirect_stdout(f): execute_train(encoder_class=MLPEncoder, decoder_class=MLPDecoder, encoder_args=dict(hidden_size=5, layers=2), decoder_args=dict(hidden_size=5, layers=2), args=args) out = f.getvalue() # check correct output assert "Cost multiple" in out and "Final multiple val" in out and "Final loss_val" in out \ and "Final loss_train" in out, 'Wrong output format' remove_files(folder_name, dataset_name)
def test_cnn_model_output(self): folder_name, dataset_name, args = generate_dataset_and_parser() f = io.StringIO() with redirect_stdout(f): execute_train(encoder_class=CNNEncoder, decoder_class=CNNDecoder, encoder_args=dict(readout_layers=1, channels=4, layers=2, kernel_size=3, non_linearity=True), decoder_args=dict(readout_layers=1, channels=4, layers=2, kernel_size=3, non_linearity=True), args=args) out = f.getvalue() # check correct output assert "Cost multiple" in out and "Final multiple val" in out and "Final loss_val" in out \ and "Final loss_train" in out, 'Wrong output format' remove_files(folder_name, dataset_name)
from multiple_alignment.steiner_string.models.convolutional.model import CNNEncoder, CNNDecoder from multiple_alignment.steiner_string.train import execute_train from multiple_alignment.steiner_string.parser import general_arg_parser parser = general_arg_parser() parser.add_argument('--readout_layers', type=int, default=2, help='') parser.add_argument('--channels', type=int, default=20, help='') parser.add_argument('--layers', type=int, default=2, help='') parser.add_argument('--kernel_size', type=int, default=3, help='') parser.add_argument('--non_linearity', type=bool, default=False, help='') args = parser.parse_args() execute_train(encoder_class=CNNEncoder, decoder_class=CNNDecoder, encoder_args=dict(readout_layers=args.readout_layers, channels=args.channels, layers=args.layers, kernel_size=args.kernel_size, non_linearity=args.non_linearity), decoder_args=dict(readout_layers=args.readout_layers, channels=args.channels, layers=args.layers, kernel_size=args.kernel_size, non_linearity=args.non_linearity), args=args)