def main(): args = arguments.parse() if args is None: return set_seed(args) logger = initialize_logger(args) logger.info(f'Arguments:\n{pformat(vars(args))}') # 调用vars(args)的format函数,得到字符串? field, save_dict = None, None # tuple unpacking if args.load is not None: logger.info(f'Loading field from {os.path.join(args.save, args.load)}') save_dict = torch.load(os.path.join(args.save, args.load)) field = save_dict['field'] # field is the value in the 'field' key of the data field, train_sets, val_sets = prepare_data(args, field, logger) run_args = (field, train_sets, val_sets, save_dict) if len(args.gpus) > 1: logger.info(f'Multiprocessing') # 多gpu mp = Multiprocess(run, args) mp.run(run_args) else: logger.info(f'Processing') # f string of python 3.6 run(args, run_args, world_size=args.world_size)
def main(): args = arguments.parse() if args is None: return set_seed(args) logger = initialize_logger(args) logger.info(f'Arguments:\n{pformat(vars(args))}') field, save_dict = None, None if args.load is not None: logger.info(f'Loading field from {os.path.join(args.save, args.load)}') save_dict = torch.load(os.path.join(args.save, args.load)) field = save_dict['field'] field, train_sets, val_sets = prepare_data(args, field, logger) run_args = (field, train_sets, val_sets, save_dict) if len(args.gpus) > 1: logger.info(f'Multiprocessing') mp = Multiprocess(run, args) mp.run(run_args) else: logger.info(f'Processing') run(args, run_args, world_size=args.world_size)
def init_opt(args, model): opt = None if args.transformer_lr: opt = torch.optim.Adam(model.params, betas=(0.9, 0.98), eps=1e-9) else: opt = torch.optim.Adam(model.params, betas=(args.beta0, 0.999)) return opt if __name__ == '__main__': args = arguments.parse() set_seed(args) logger = initialize_logger(args) logger.info(f'Arguments:\n{pformat(vars(args))}') field, save_dict = None, None if args.load is not None: logger.info(f'Loading field from {os.path.join(args.save, args.load)}') save_dict = torch.load(os.path.join(args.save, args.load)) field = save_dict['field'] field, train_sets, val_sets = prepare_data(args, field, logger) run_args = (field, train_sets, val_sets, save_dict) if len(args.gpus) > 1: logger.info(f'Multiprocessing') mp = Multiprocess(run, args) mp.run(run_args) else: logger.info(f'Processing') run(args, run_args, world_size=args.world_size)