コード例 #1
0
 def build(self, mdp_info):
     policy = GaussianTorchPolicy(Network, mdp_info.observation_space.shape,
                                  mdp_info.action_space.shape,
                                  **self.policy_params)
     self.critic_params["input_shape"] = mdp_info.observation_space.shape
     self.alg_params['critic_params'] = self.critic_params
     return TRPO(mdp_info, policy, **self.alg_params)
コード例 #2
0
def learn(alg, alg_params):
    mdp = InvertedPendulum(horizon=50)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.Adam,
                             'params': {
                                 'lr': 3e-4
                             }
                         },
                         loss=F.mse_loss,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    policy_params = dict(std_0=1., use_cuda=False)

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    alg_params['critic_params'] = critic_params

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    core.learn(n_episodes=2, n_episodes_per_fit=1)

    return agent
コード例 #3
0
def experiment(alg, env_id, horizon, gamma, n_epochs, n_steps, n_steps_per_fit,
               n_episodes_test, alg_params, policy_params):
    print(alg.__name__)

    mdp = Gym(env_id, horizon, gamma)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.Adam,
                             'params': {
                                 'lr': 3e-4
                             }
                         },
                         loss=F.mse_loss,
                         n_features=32,
                         batch_size=64,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    alg_params['critic_params'] = critic_params

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    dataset = core.evaluate(n_episodes=n_episodes_test, render=False)

    J = np.mean(compute_J(dataset, mdp.info.gamma))
    R = np.mean(compute_J(dataset))
    E = agent.policy.entropy()

    tqdm.write('END OF EPOCH 0')
    tqdm.write('J: {}, R: {}, entropy: {}'.format(J, R, E))
    tqdm.write(
        '##################################################################################################'
    )

    for it in trange(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit)
        dataset = core.evaluate(n_episodes=n_episodes_test, render=False)

        J = np.mean(compute_J(dataset, mdp.info.gamma))
        R = np.mean(compute_J(dataset))
        E = agent.policy.entropy()

        tqdm.write('END OF EPOCH ' + str(it + 1))
        tqdm.write('J: {}, R: {}, entropy: {}'.format(J, R, E))
        tqdm.write(
            '##################################################################################################'
        )

    print('Press a button to visualize')
    input()
    core.evaluate(n_episodes=5, render=True)
コード例 #4
0
def experiment(alg, env_id, horizon, gamma, n_epochs, n_steps, n_steps_per_fit,
               n_step_test, alg_params, policy_params):
    logger = Logger(A2C.__name__, results_dir=None)
    logger.strong_line()
    logger.info('Experiment Algorithm: ' + A2C.__name__)

    mdp = Gym(env_id, horizon, gamma)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.RMSprop,
                             'params': {
                                 'lr': 7e-4,
                                 'eps': 1e-5
                             }
                         },
                         loss=F.mse_loss,
                         n_features=64,
                         batch_size=64,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    alg_params['critic_params'] = critic_params

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    dataset = core.evaluate(n_steps=n_step_test, render=False)

    J = np.mean(compute_J(dataset, mdp.info.gamma))
    R = np.mean(compute_J(dataset))
    E = agent.policy.entropy()

    logger.epoch_info(0, J=J, R=R, entropy=E)

    for it in trange(n_epochs):
        core.learn(n_steps=n_steps, n_steps_per_fit=n_steps_per_fit)
        dataset = core.evaluate(n_steps=n_step_test, render=False)

        J = np.mean(compute_J(dataset, mdp.info.gamma))
        R = np.mean(compute_J(dataset))
        E = agent.policy.entropy()

        logger.epoch_info(it + 1, J=J, R=R, entropy=E)

    logger.info('Press a button to visualize')
    input()
    core.evaluate(n_episodes=5, render=True)
コード例 #5
0
def test_a2c():
    mdp = Gym(name='Pendulum-v0', horizon=200, gamma=.99)
    mdp.seed(1)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    policy_params = dict(std_0=1., n_features=64, use_cuda=False)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.RMSprop,
                             'params': {
                                 'lr': 7e-4,
                                 'eps': 1e-5
                             }
                         },
                         loss=F.mse_loss,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    algorithm_params = dict(critic_params=critic_params,
                            actor_optimizer={
                                'class': optim.RMSprop,
                                'params': {
                                    'lr': 7e-4,
                                    'eps': 3e-3
                                }
                            },
                            max_grad_norm=0.5,
                            ent_coeff=0.01)

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    agent = A2C(mdp.info, policy, **algorithm_params)

    core = Core(agent, mdp)

    core.learn(n_episodes=10, n_episodes_per_fit=5)

    w = agent.policy.get_weights()
    w_test = np.array(
        [-1.6307759, 1.0356185, -0.34508315, 0.27108294, -0.01047843])

    assert np.allclose(w, w_test)
コード例 #6
0
def learn(alg, alg_params):
    class Network(nn.Module):
        def __init__(self, input_shape, output_shape, **kwargs):
            super(Network, self).__init__()

            n_input = input_shape[-1]
            n_output = output_shape[0]

            self._h = nn.Linear(n_input, n_output)

            nn.init.xavier_uniform_(self._h.weight,
                                    gain=nn.init.calculate_gain('relu'))

        def forward(self, state, **kwargs):
            return F.relu(self._h(torch.squeeze(state, 1).float()))

    mdp = Gym('Pendulum-v0', 200, .99)
    mdp.seed(1)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    critic_params = dict(network=Network,
                         optimizer={'class': optim.Adam,
                                    'params': {'lr': 3e-4}},
                         loss=F.mse_loss,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1,))

    policy_params = dict(std_0=1., use_cuda=False)

    policy = GaussianTorchPolicy(Network,
                                 mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape,
                                 **policy_params)

    alg_params['critic_params'] = critic_params

    agent = alg(mdp.info, policy, **alg_params)

    core = Core(agent, mdp)

    core.learn(n_episodes=2, n_episodes_per_fit=1)

    return policy
コード例 #7
0
def learn_a2c():
    mdp = Gym(name='Pendulum-v0', horizon=200, gamma=.99)
    mdp.seed(1)
    np.random.seed(1)
    torch.manual_seed(1)
    torch.cuda.manual_seed(1)

    policy_params = dict(std_0=1., n_features=64, use_cuda=False)

    critic_params = dict(network=Network,
                         optimizer={
                             'class': optim.RMSprop,
                             'params': {
                                 'lr': 7e-4,
                                 'eps': 1e-5
                             }
                         },
                         loss=F.mse_loss,
                         input_shape=mdp.info.observation_space.shape,
                         output_shape=(1, ))

    algorithm_params = dict(critic_params=critic_params,
                            actor_optimizer={
                                'class': optim.RMSprop,
                                'params': {
                                    'lr': 7e-4,
                                    'eps': 3e-3
                                }
                            },
                            max_grad_norm=0.5,
                            ent_coeff=0.01)

    policy = GaussianTorchPolicy(Network, mdp.info.observation_space.shape,
                                 mdp.info.action_space.shape, **policy_params)

    agent = A2C(mdp.info, policy, **algorithm_params)

    core = Core(agent, mdp)
    core.learn(n_episodes=10, n_episodes_per_fit=5)

    return agent