class DDPG(DeepAC): """ Deep Deterministic Policy Gradient algorithm. "Continuous Control with Deep Reinforcement Learning". Lillicrap T. P. et al.. 2016. """ def __init__(self, mdp_info, policy_class, policy_params, actor_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, tau, policy_delay=1, critic_fit_params=None): """ Constructor. Args: policy_class (Policy): class of the policy; policy_params (dict): parameters of the policy to build; actor_params (dict): parameters of the actor approximator to build; actor_optimizer (dict): parameters to specify the actor optimizer algorithm; critic_params (dict): parameters of the critic approximator to build; batch_size (int): the number of samples in a batch; initial_replay_size (int): the number of samples to collect before starting the learning; max_replay_size (int): the maximum number of samples in the replay memory; tau (float): value of coefficient for soft updates; policy_delay (int, 1): the number of updates of the critic after which an actor update is implemented; critic_fit_params (dict, None): parameters of the fitting algorithm of the critic approximator; """ self._critic_fit_params = dict( ) if critic_fit_params is None else critic_fit_params self._batch_size = batch_size self._tau = tau self._policy_delay = policy_delay self._fit_count = 0 self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size) target_critic_params = deepcopy(critic_params) self._critic_approximator = Regressor(TorchApproximator, **critic_params) self._target_critic_approximator = Regressor(TorchApproximator, **target_critic_params) target_actor_params = deepcopy(actor_params) self._actor_approximator = Regressor(TorchApproximator, **actor_params) self._target_actor_approximator = Regressor(TorchApproximator, **target_actor_params) self._init_target(self._critic_approximator, self._target_critic_approximator) self._init_target(self._actor_approximator, self._target_actor_approximator) policy = policy_class(self._actor_approximator, **policy_params) policy_parameters = self._actor_approximator.model.network.parameters() super().__init__(mdp_info, policy, actor_optimizer, policy_parameters) def fit(self, dataset): self._replay_memory.add(dataset) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _ =\ self._replay_memory.get(self._batch_size) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next self._critic_approximator.fit(state, action, q, **self._critic_fit_params) if self._fit_count % self._policy_delay == 0: loss = self._loss(state) self._optimize_actor_parameters(loss) self._update_target(self._critic_approximator, self._target_critic_approximator) self._update_target(self._actor_approximator, self._target_actor_approximator) self._fit_count += 1 def _loss(self, state): action = self._actor_approximator(state, output_tensor=True) q = self._critic_approximator(state, action, output_tensor=True) return -q.mean() def _next_q(self, next_state, absorbing): """ Args: next_state (np.ndarray): the states where next action has to be evaluated; absorbing (np.ndarray): the absorbing flag for the states in ``next_state``. Returns: Action-values returned by the critic for ``next_state`` and the action returned by the actor. """ a = self._target_actor_approximator(next_state) q = self._target_critic_approximator.predict(next_state, a) q *= 1 - absorbing return q
class DQN(Agent): """ Deep Q-Network algorithm. "Human-Level Control Through Deep Reinforcement Learning". Mnih V. et al.. 2015. """ def __init__(self, mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, n_approximators=1, clip_reward=True): """ Constructor. Args: approximator (object): the approximator to use to fit the Q-function; approximator_params (dict): parameters of the approximator to build; batch_size (int): the number of samples in a batch; target_update_frequency (int): the number of samples collected between each update of the target network; replay_memory ([ReplayMemory, PrioritizedReplayMemory], None): the object of the replay memory to use; if None, a default replay memory is created; initial_replay_size (int): the number of samples to collect before starting the learning; max_replay_size (int): the maximum number of samples in the replay memory; fit_params (dict, None): parameters of the fitting algorithm of the approximator; n_approximators (int, 1): the number of approximator to use in ``AveragedDQN``; clip_reward (bool, True): whether to clip the reward or not. """ self._fit_params = dict() if fit_params is None else fit_params self._batch_size = batch_size self._n_approximators = n_approximators self._clip_reward = clip_reward self._target_update_frequency = target_update_frequency if replay_memory is not None: self._replay_memory = replay_memory if isinstance(replay_memory, PrioritizedReplayMemory): self._fit = self._fit_prioritized else: self._fit = self._fit_standard else: self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size) self._fit = self._fit_standard self._n_updates = 0 apprx_params_train = deepcopy(approximator_params) apprx_params_target = deepcopy(approximator_params) self.approximator = Regressor(approximator, **apprx_params_train) self.target_approximator = Regressor(approximator, n_models=self._n_approximators, **apprx_params_target) policy.set_q(self.approximator) if self._n_approximators == 1: self.target_approximator.set_weights( self.approximator.get_weights()) else: for i in range(self._n_approximators): self.target_approximator[i].set_weights( self.approximator.get_weights()) self._add_save_attr(_fit_params='pickle', _batch_size='primitive', _n_approximators='primitive', _clip_reward='primitive', _target_update_frequency='primitive', _replay_memory='mushroom', _n_updates='primitive', approximator='mushroom', target_approximator='mushroom') super().__init__(mdp_info, policy) def fit(self, dataset): self._fit(dataset) self._n_updates += 1 if self._n_updates % self._target_update_frequency == 0: self._update_target() def _fit_standard(self, dataset): self._replay_memory.add(dataset) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _ = \ self._replay_memory.get(self._batch_size) if self._clip_reward: reward = np.clip(reward, -1, 1) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next self.approximator.fit(state, action, q, **self._fit_params) def _fit_prioritized(self, dataset): self._replay_memory.add( dataset, np.ones(len(dataset)) * self._replay_memory.max_priority) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _, idxs, is_weight = \ self._replay_memory.get(self._batch_size) if self._clip_reward: reward = np.clip(reward, -1, 1) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next td_error = q - self.approximator.predict(state, action) self._replay_memory.update(td_error, idxs) self.approximator.fit(state, action, q, weights=is_weight, **self._fit_params) def _update_target(self): """ Update the target network. """ self.target_approximator.set_weights(self.approximator.get_weights()) def _next_q(self, next_state, absorbing): """ Args: next_state (np.ndarray): the states where next action has to be evaluated; absorbing (np.ndarray): the absorbing flag for the states in ``next_state``. Returns: Maximum action-value for each state in ``next_state``. """ q = self.target_approximator.predict(next_state) if np.any(absorbing): q *= 1 - absorbing.reshape(-1, 1) return np.max(q, axis=1) def draw_action(self, state): action = super(DQN, self).draw_action(np.array(state)) return action def _post_load(self): if isinstance(self._replay_memory, PrioritizedReplayMemory): self._fit = self._fit_prioritized else: self._fit = self._fit_standard self.policy.set_q(self.approximator)
class SAC(DeepAC): """ Soft Actor-Critic algorithm. "Soft Actor-Critic Algorithms and Applications". Haarnoja T. et al.. 2019. """ def __init__(self, mdp_info, actor_mu_params, actor_sigma_params, actor_optimizer, critic_params, batch_size, initial_replay_size, max_replay_size, warmup_transitions, tau, lr_alpha, target_entropy=None, critic_fit_params=None): """ Constructor. Args: actor_mu_params (dict): parameters of the actor mean approximator to build; actor_sigma_params (dict): parameters of the actor sigm approximator to build; actor_optimizer (dict): parameters to specify the actor optimizer algorithm; critic_params (dict): parameters of the critic approximator to build; batch_size (int): the number of samples in a batch; initial_replay_size (int): the number of samples to collect before starting the learning; max_replay_size (int): the maximum number of samples in the replay memory; warmup_transitions (int): number of samples to accumulate in the replay memory to start the policy fitting; tau (float): value of coefficient for soft updates; lr_alpha (float): Learning rate for the entropy coefficient; target_entropy (float, None): target entropy for the policy, if None a default value is computed ; critic_fit_params (dict, None): parameters of the fitting algorithm of the critic approximator. """ self._critic_fit_params = dict() if critic_fit_params is None else critic_fit_params self._batch_size = batch_size self._warmup_transitions = warmup_transitions self._tau = tau if target_entropy is None: self._target_entropy = -np.prod(mdp_info.action_space.shape).astype(np.float32) else: self._target_entropy = target_entropy self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size) if 'n_models' in critic_params.keys(): assert critic_params['n_models'] == 2 else: critic_params['n_models'] = 2 target_critic_params = deepcopy(critic_params) self._critic_approximator = Regressor(TorchApproximator, **critic_params) self._target_critic_approximator = Regressor(TorchApproximator, **target_critic_params) actor_mu_approximator = Regressor(TorchApproximator, **actor_mu_params) actor_sigma_approximator = Regressor(TorchApproximator, **actor_sigma_params) policy = SACPolicy(actor_mu_approximator, actor_sigma_approximator, mdp_info.action_space.low, mdp_info.action_space.high) self._init_target(self._critic_approximator, self._target_critic_approximator) self._log_alpha = torch.tensor(0., dtype=torch.float32) if policy.use_cuda: self._log_alpha = self._log_alpha.cuda().requires_grad_() else: self._log_alpha.requires_grad_() self._alpha_optim = optim.Adam([self._log_alpha], lr=lr_alpha) policy_parameters = chain(actor_mu_approximator.model.network.parameters(), actor_sigma_approximator.model.network.parameters()) self._add_save_attr( _critic_fit_params='pickle', _batch_size='numpy', _warmup_transitions='numpy', _tau='numpy', _target_entropy='numpy', _replay_memory='pickle', _critic_approximator='pickle', _target_critic_approximator='pickle', _log_alpha='pickle', _alpha_optim='pickle' ) super().__init__(mdp_info, policy, actor_optimizer, policy_parameters) def fit(self, dataset): self._replay_memory.add(dataset) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _ = \ self._replay_memory.get(self._batch_size) if self._replay_memory.size > self._warmup_transitions: action_new, log_prob = self.policy.compute_action_and_log_prob_t(state) loss = self._loss(state, action_new, log_prob) self._optimize_actor_parameters(loss) self._update_alpha(log_prob.detach()) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next self._critic_approximator.fit(state, action, q, **self._critic_fit_params) self._update_target(self._critic_approximator, self._target_critic_approximator) def _loss(self, state, action_new, log_prob): q_0 = self._critic_approximator(state, action_new, output_tensor=True, idx=0) q_1 = self._critic_approximator(state, action_new, output_tensor=True, idx=1) q = torch.min(q_0, q_1) return (self._alpha * log_prob - q).mean() def _update_alpha(self, log_prob): alpha_loss = - (self._log_alpha * (log_prob + self._target_entropy)).mean() self._alpha_optim.zero_grad() alpha_loss.backward() self._alpha_optim.step() def _next_q(self, next_state, absorbing): """ Args: next_state (np.ndarray): the states where next action has to be evaluated; absorbing (np.ndarray): the absorbing flag for the states in ``next_state``. Returns: Action-values returned by the critic for ``next_state`` and the action returned by the actor. """ a, log_prob_next = self.policy.compute_action_and_log_prob(next_state) q = self._target_critic_approximator.predict( next_state, a, prediction='min') - self._alpha_np * log_prob_next q *= 1 - absorbing return q def _post_load(self): if self._optimizer is not None: self._parameters = list( chain(self.policy._mu_approximator.model.network.parameters(), self.policy._sigma_approximator.model.network.parameters() ) ) @property def _alpha(self): return self._log_alpha.exp() @property def _alpha_np(self): return self._alpha.detach().cpu().numpy()
class AbstractDQN(Agent): def __init__(self, mdp_info, policy, approximator, approximator_params, batch_size, target_update_frequency, replay_memory=None, initial_replay_size=500, max_replay_size=5000, fit_params=None, clip_reward=False): """ Constructor. Args: approximator (object): the approximator to use to fit the Q-function; approximator_params (dict): parameters of the approximator to build; batch_size ((int, Parameter)): the number of samples in a batch; target_update_frequency (int): the number of samples collected between each update of the target network; replay_memory ([ReplayMemory, PrioritizedReplayMemory], None): the object of the replay memory to use; if None, a default replay memory is created; initial_replay_size (int): the number of samples to collect before starting the learning; max_replay_size (int): the maximum number of samples in the replay memory; fit_params (dict, None): parameters of the fitting algorithm of the approximator; clip_reward (bool, False): whether to clip the reward or not. """ self._fit_params = dict() if fit_params is None else fit_params self._batch_size = to_parameter(batch_size) self._clip_reward = clip_reward self._target_update_frequency = target_update_frequency if replay_memory is not None: self._replay_memory = replay_memory if isinstance(replay_memory, PrioritizedReplayMemory): self._fit = self._fit_prioritized else: self._fit = self._fit_standard else: self._replay_memory = ReplayMemory(initial_replay_size, max_replay_size) self._fit = self._fit_standard self._n_updates = 0 apprx_params_train = deepcopy(approximator_params) apprx_params_target = deepcopy(approximator_params) self._initialize_regressors(approximator, apprx_params_train, apprx_params_target) policy.set_q(self.approximator) self._add_save_attr( _fit_params='pickle', _batch_size='mushroom', _n_approximators='primitive', _clip_reward='primitive', _target_update_frequency='primitive', _replay_memory='mushroom', _n_updates='primitive', approximator='mushroom', target_approximator='mushroom' ) super().__init__(mdp_info, policy) def fit(self, dataset): self._fit(dataset) self._n_updates += 1 if self._n_updates % self._target_update_frequency == 0: self._update_target() def _fit_standard(self, dataset, approximator=None): self._replay_memory.add(dataset) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _ = \ self._replay_memory.get(self._batch_size()) if self._clip_reward: reward = np.clip(reward, -1, 1) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next if approximator is None: self.approximator.fit(state, action, q, **self._fit_params) else: approximator.fit(state, action, q, **self._fit_params) def _fit_prioritized(self, dataset, approximator=None): self._replay_memory.add( dataset, np.ones(len(dataset)) * self._replay_memory.max_priority) if self._replay_memory.initialized: state, action, reward, next_state, absorbing, _, idxs, is_weight = \ self._replay_memory.get(self._batch_size()) if self._clip_reward: reward = np.clip(reward, -1, 1) q_next = self._next_q(next_state, absorbing) q = reward + self.mdp_info.gamma * q_next td_error = q - self.approximator.predict(state, action) self._replay_memory.update(td_error, idxs) if approximator is None: self.approximator.fit(state, action, q, weights=is_weight, **self._fit_params) else: approximator.fit(state, action, q, weights=is_weight, **self._fit_params) def draw_action(self, state): action = super().draw_action(np.array(state)) return action def _initialize_regressors(self, approximator, apprx_params_train, apprx_params_target): self.approximator = Regressor(approximator, **apprx_params_train) self.target_approximator = Regressor(approximator, **apprx_params_target) self._update_target() def _update_target(self): """ Update the target network. """ self.target_approximator.set_weights(self.approximator.get_weights()) def _next_q(self, next_state, absorbing): """ Args: next_state (np.ndarray): the states where next action has to be evaluated; absorbing (np.ndarray): the absorbing flag for the states in ``next_state``. Returns: Maximum action-value for each state in ``next_state``. """ raise NotImplementedError def _post_load(self): if isinstance(self._replay_memory, PrioritizedReplayMemory): self._fit = self._fit_prioritized else: self._fit = self._fit_standard self.policy.set_q(self.approximator)