def preprocessing(chunk_size=100): # load data loaders, encoder = createLoaders(extras=extras, chunk_size=chunk_size) dataloaders = dict(zip(['train', 'val', 'test'], loaders)) print('------- Info ---------') for phase in dataloaders: print('- %s size: %i' % (phase, len(dataloaders[phase]))) print('----------------------') return dataloaders, encoder
import utils as ut import torch from torch.utils.data import DataLoader import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable from torch import optim from music_dataloader import createLoaders import numpy as np # Check if your system supports CUDA use_cuda = torch.cuda.is_available() # Setup GPU optimization if CUDA is supported if use_cuda: computing_device = torch.device("cuda") extras = {"num_workers": 1, "pin_memory": True} print("CUDA is supported") else: # Otherwise, train on the CPU computing_device = torch.device("cpu") extras = False print("CUDA NOT supported") # load data train_loader, val_loader, test_loader = createLoaders(extras=extras) criterion = nn.CrossEntropyLoss()
# Check if your system supports CUDA use_cuda = torch.cuda.is_available() # Setup GPU optimization if CUDA is supported if use_cuda: computing_device = torch.device("cuda") extras = {"num_workers": 1, "pin_memory": True} print("CUDA is supported") else: # Otherwise, train on the CPU computing_device = torch.device("cpu") extras = False print("CUDA NOT supported") # load data train_loader, val_loader, test_loader, one_hot_length = createLoaders( extras=extras) RNN = rnn.RNN(hidden_size, one_hot_length, computing_device) RNN = RNN.to(computing_device) print("Model on CUDA?", next(RNN.parameters()).is_cuda) print("Model on CUDA?", next(RNN.parameters()).is_cuda, file=open("output.txt", "a")) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(RNN.parameters()) # Track the loss across training chunk_train_loss = [] # calculate training and validation loss per N times through the whole training process batch_train_loss = []