def make_predictions(): #We will make predictions for those experiments, which are already finished, but don't have the csv file with predictions experiments = projects.Project(Path(__file__).parent.parent).experiments() for exp in experiments: res_file = os.path.join(exp.path, exp.name() + '_result.csv') if exp.isCompleted() and not os.path.exists(res_file): preds = generic.parse(exp.path).predictions('test') preds.dump(res_file)
def basic_test(experiment_name: str): pr = projects.Project(os.path.join(fl, "../examples")) exp = pr.byName(experiment_name) tasks = exp.fit() executor = parralel.get_executor(1, 1) executor.execute(tasks) return exp.result(False, True)
def test_basic_network(self): pr = projects.Project(os.path.join(fl, "project")) exp = pr.byName("exp01") tasks = exp.fit() executor = parralel.get_executor(1, 1) executor.execute(tasks) r = exp.result() self.assertGreaterEqual(r, 0, "Result should be greater then zero") self.assertTrue(isinstance(r, float), "result should be float") print(r) pass
def make_predictions(): experiments = projects.Project(Path(__file__).parent.parent).experiments() for exp in experiments: if exp.isCompleted(): file_path=os.path.join(context.get_current_project_data_path(),"rus.vocab") vocabulary=utils.load(file_path) preds = generic.parse(exp.path).predictions('test') for item in preds: rootItem = item.rootItem() sentence = '' for indices in item.prediction: sentence = sentence + " " + vocabulary.i2w[np.argmax(indices)] print(rootItem.x + " " + sentence)
def project(self, id): return projects.Project(os.path.join(self.root, id))
def __init__(self, path): self.path = path self.project = projects.Project(path) self.project.get_visualizers()