def test_glmnet_c_sensitivities(): data = normal_feature_dataset(perlabel=10, nlabels=2, nfeatures=4) # use GLMNET on binary problem clf = GLMNET_C() clf.train(data) # now ask for the sensitivities WITHOUT having to pass the dataset # again sens = clf.get_sensitivity_analyzer(force_train=False)(None) #failUnless(sens.shape == (data.nfeatures,)) assert_equal(sens.shape, (len(data.UT), data.nfeatures))
def test_glmnet_c_sensitivities(): data = normal_feature_dataset(perlabel=10, nlabels=2, nfeatures=4) # use GLMNET on binary problem clf = GLMNET_C() clf.train(data) # now ask for the sensitivities WITHOUT having to pass the dataset # again sens = clf.get_sensitivity_analyzer(force_training=False)() #failUnless(sens.shape == (data.nfeatures,)) assert_equal(sens.shape, (len(data.UT), data.nfeatures))
def test_glmnet_c(): # define binary prob data = datasets['dumb2'] # use GLMNET on binary problem clf = GLMNET_C() clf.ca.enable('estimates') clf.train(data) # test predictions pre = clf.predict(data.samples) assert_array_equal(pre, data.targets)