コード例 #1
0
ファイル: test_lars.py プロジェクト: gorlins/PyMVPA
    def testLARSSensitivities(self):
        data = normalFeatureDataset(perlabel=10, nlabels=2, nfeatures=4)

        # use LARS on binary problem
        clf = LARS()
        clf.train(data)

        # now ask for the sensitivities WITHOUT having to pass the dataset
        # again
        sens = clf.getSensitivityAnalyzer(force_training=False)()

        self.failUnless(sens.shape == (data.nfeatures,))
コード例 #2
0
ファイル: test_lars.py プロジェクト: arokem/PyMVPA
    def test_lars_sensitivities(self):
        data = datasets['chirp_linear']

        # use LARS on binary problem
        clf = LARS()
        clf.train(data)

        # now ask for the sensitivities WITHOUT having to pass the dataset
        # again
        sens = clf.get_sensitivity_analyzer(force_training=False)()

        self.failUnless(sens.shape == (1, data.nfeatures))
コード例 #3
0
    def test_lars_sensitivities(self):
        data = datasets['chirp_linear']

        # use LARS on binary problem
        clf = LARS()
        clf.train(data)

        # now ask for the sensitivities WITHOUT having to pass the dataset
        # again
        sens = clf.get_sensitivity_analyzer(force_training=False)()

        self.failUnless(sens.shape == (1, data.nfeatures))
コード例 #4
0
    def test_lars_state(self):
        #data = datasets['dumb2']
        # for some reason the R code fails with the dumb data
        data = datasets['chirp_linear']

        clf = LARS()

        clf.train(data)

        clf.ca.enable('predictions')

        p = clf.predict(data.samples)

        self.failUnless((p == clf.ca.predictions).all())
コード例 #5
0
ファイル: test_lars.py プロジェクト: gorlins/PyMVPA
    def testLARSState(self):
        #data = datasets['dumb2']
        # for some reason the R code fails with the dumb data
        data = datasets['chirp_linear']


        clf = LARS()

        clf.train(data)

        clf.states.enable('predictions')

        p = clf.predict(data.samples)

        self.failUnless((p == clf.predictions).all())
コード例 #6
0
    def test_lars(self):
        # not the perfect dataset with which to test, but
        # it will do for now.
        #data = datasets['dumb2']
        # for some reason the R code fails with the dumb data
        data = datasets['chirp_linear']

        clf = LARS()

        clf.train(data)

        # prediction has to be almost perfect
        # test with a correlation
        pre = clf.predict(data.samples)
        cor = pearsonr(pre, data.targets)
        if cfg.getboolean('tests', 'labile', default='yes'):
            self.failUnless(cor[0] > .8)
コード例 #7
0
ファイル: test_lars.py プロジェクト: gorlins/PyMVPA
    def testLARS(self):
        # not the perfect dataset with which to test, but
        # it will do for now.
        #data = datasets['dumb2']
        # for some reason the R code fails with the dumb data
        data = datasets['chirp_linear']


        clf = LARS(regression=True)

        clf.train(data)

        # prediction has to be almost perfect
        # test with a correlation
        pre = clf.predict(data.samples)
        cor = pearsonr(pre, data.labels)
        if cfg.getboolean('tests', 'labile', default='yes'):
            self.failUnless(cor[0] > .8)
コード例 #8
0
ファイル: warehouse.py プロジェクト: heqing-psychology/PyMVPA
            #sg.SVM(svm_impl=impl, kernel_type='RBF',
            #       descr='sg.RBFSVMR()/%s' % impl),
        ]

if len(clfswh['svm', 'linear']) > 0:
    # if any SVM implementation is known, import default ones
    from mvpa.clfs.svm import *

# lars from R via RPy
if externals.exists('lars'):
    import mvpa.clfs.lars as lars
    from mvpa.clfs.lars import LARS
    for model in lars.known_models:
        # XXX create proper repository of classifiers!
        lars_clf = RegressionAsClassifier(
            LARS(descr="LARS(%s)" % model, model_type=model),
            descr='LARS(model_type=%r) classifier' % model)
        clfswh += lars_clf

        # is a regression, too
        lars_regr = LARS(descr="_LARS(%s)" % model, model_type=model)
        regrswh += lars_regr
        # clfswh += MulticlassClassifier(lars,
        #             descr='Multiclass %s' % lars.descr)

## Still fails unittests battery although overhauled otherwise.
## # enet from R via RPy2
## if externals.exists('elasticnet'):
##     from mvpa.clfs.enet import ENET
##     clfswh += RegressionAsClassifier(ENET(),
##                                      descr="RegressionAsClassifier(ENET())")