コード例 #1
0
def get_node_size(matrix, absolute=True):
    
    matrix = np.nan_to_num(copy_matrix(matrix, diagonal_filler=0))
    if absolute == True:
        matrix = np.abs(matrix)
    
    return matrix.sum(axis=0)
コード例 #2
0
def get_node_size(matrix, absolute=True):

    matrix = np.nan_to_num(copy_matrix(matrix, diagonal_filler=0))
    if absolute == True:
        matrix = np.abs(matrix)

    return matrix.sum(axis=0)
コード例 #3
0
def plot_states_matrices(
        X,
        labels,
        node_number=[6, 5, 8, 10, 4, 5, 7],
        node_networks=['DAN', 'VAN', 'SMN', 'VIS', 'AUD', 'LAN', 'DMN'],
        use_centroid=False,
        n_cols=3,
        save_fig=False,
        save_path="/media/robbis/DATA/fmri/movie_viviana",
        save_name_condition=None,
        **kwargs):
    """
    Plots the centroids in square matrix form.
    It could be used with original data and labels but also 
    with the original centroids if you set use_centroids as True. 
    
    """

    position = [sum(node_number[:i + 1]) for i in range(len(node_number))]

    if not use_centroid:
        centroids = get_centroids(X, labels)(X, labels)
        n_states = len(np.unique(labels))
    else:
        centroids = X.copy()
        n_states = X.shape[0]

    position_label = [
        -0.5 + position[i] - node_number[i] / 2.
        for i in range(len(node_number))
    ]
    n_rows = np.ceil(n_states / float(n_cols))

    fig = pl.figure()

    for i in np.arange(n_states):

        ax = fig.add_subplot(n_rows, n_cols, i + 1)

        matrix_ = copy_matrix(array_to_matrix(centroids[i]), diagonal_filler=0)
        n_nodes = matrix_.shape[0]
        ax.imshow(matrix_, interpolation='nearest', vmin=0, cmap=pl.cm.bwr)
        for _, end_network in zip(node_networks, position):
            ax.vlines(end_network - 0.5, -0.5, n_nodes - 0.5)
            ax.hlines(end_network - 0.5, -0.5, n_nodes - 0.5)

        ax.set_title('State ' + str(i + 1))
        ax.set_xticks(position_label)
        ax.set_xticklabels(node_networks)
        ax.set_yticks(position_label)
        ax.set_yticklabels(node_networks)

        #pl.colorbar()

    if save_fig:
        fname = "%s_state_%s.png" % (str(save_name_condition), str(i + 1))
        fig.savefig(os.path.join(save_path, fname))

    pl.close('all')
    return fig
コード例 #4
0
ファイル: plot.py プロジェクト: robbisg/mvpa_itab_wu
def plot_states_matrices(X, 
                         labels,
                         node_number=[6,5,8,10,4,5,7], 
                         node_networks=['DAN','VAN','SMN','VIS','AUD','LAN','DMN'],
                         use_centroid=False,
                         n_cols=3,
                         save_fig=False,
                         save_path="/media/robbis/DATA/fmri/movie_viviana",
                         save_name_condition=None,
                         **kwargs
                         ):
    """
    Plots the centroids in square matrix form.
    It could be used with original data and labels but also 
    with the original centroids if you set use_centroids as True. 
    
    """

    position = [sum(node_number[:i+1]) for i in range(len(node_number))]
    
    if not use_centroid:
        centroids = get_centroids(X, labels)
        n_states = len(np.unique(labels))
    else:
        centroids = X.copy()
        n_states = X.shape[0]
    
    
    position_label = [-0.5+position[i]-node_number[i]/2. for i in range(len(node_number))]
    n_rows = np.ceil(n_states / float(n_cols))
    print n_rows, n_cols
    fig = pl.figure()
        
    for i in np.arange(n_states):
        
        ax = fig.add_subplot(n_rows, n_cols, i+1)
        
        matrix_ = copy_matrix(array_to_matrix(centroids[i]), diagonal_filler=0)
        n_nodes = matrix_.shape[0]
        ax.imshow(matrix_, interpolation='nearest', vmin=0, cmap=pl.cm.inferno)
        for _, end_network in zip(node_networks, position):
            ax.vlines(end_network-0.5, -0.5, n_nodes-0.5)
            ax.hlines(end_network-0.5, -0.5, n_nodes-0.5)
        
        ax.set_title('State '+str(i+1))
        ax.set_xticks(position_label)
        ax.set_xticklabels(node_networks)
        ax.set_yticks(position_label)
        ax.set_yticklabels(node_networks)
        
        #pl.colorbar()
        
    if save_fig:
        fname = "%s_state_%s.png" % (str(save_name_condition), str(i+1))
        fig.savefig(os.path.join(save_path, fname))
    
    pl.close('all')
    return fig
コード例 #5
0
ファイル: utils.py プロジェクト: robbisg/mvpa_itab_wu
def aggregate_networks(matrix, roi_list, aggregation_fx=np.sum):
    """
    Function used to aggregate matrix values using 
    aggregative information provided by roi_list
    
    Parameters
    ----------
    matrix : numpy 2D array, shape n x n
        Connectivity matrix in squared form
    roi_list : list of string, length = n
        List of each ROI's network name. Each element represents
        the network that includes the ROI in that particular position.
        
    Returns
    -------
    aggregate_matrix : numpy 2D array, p x p
        The matrix obtained, by pairwise network sum 
        of nodes within networks.
        
    """

    unique_rois = np.unique(roi_list)
    n_roi = unique_rois.shape[0]

    aggregate_matrix = np.zeros((n_roi, n_roi), dtype=np.float)

    network_pairs = itertools.combinations(unique_rois, 2)
    indexes = np.vstack(np.triu_indices(n_roi, k=1)).T

    # This is to fill upper part of the aggregate matrix
    for i, (n1, n2) in enumerate(network_pairs):

        x = indexes[i][0]
        y = indexes[i][1]

        mask1 = roi_list == n1
        mask2 = roi_list == n2

        # Build the mask of the intersection between
        mask_roi = np.meshgrid(mask1, mask1)[1] * np.meshgrid(mask2, mask2)[0]

        value = aggregation_fx(matrix * mask_roi)
        #value /= np.sum(mask_roi)

        aggregate_matrix[x, y] = value

    # Copy matrix in the lower part
    aggregate_matrix = copy_matrix(aggregate_matrix)

    # This is to fill the diagonal with within-network sum of elements
    for i, n in enumerate(unique_rois):

        diag_matrix, _ = network_connections(matrix, n, roi_list)
        aggregate_matrix[i, i] = aggregation_fx(diag_matrix)
        # aggregate_matrix[i, i] = np.mean(diag_matrix)

    return aggregate_matrix
コード例 #6
0
def aggregate_networks(matrix, roi_list):
    """
    Function used to aggregate matrix values using 
    aggregative information provided by roi_list
    
    Parameters
    ----------
    matrix : numpy 2D array, shape n x n
        Connectivity matrix in squared form
    roi_list : list of string, length = n
        List of each ROI's network name. Each element represents
        the network that includes the ROI in that particular position.
        
    Returns
    -------
    aggregate_matrix : numpy 2D array, p x p
        The matrix obtained, by pairwise network sum 
        of nodes within networks.
        
    """
    
    unique_rois = np.unique(roi_list)
    n_roi = unique_rois.shape[0]

    aggregate_matrix = np.zeros((n_roi, n_roi), dtype=np.float)
    
    network_pairs = itertools.combinations(unique_rois, 2)
    indexes = np.vstack(np.triu_indices(n_roi, k=1)).T
    
    # This is to fill upper part of the aggregate matrix
    for i, (n1, n2) in enumerate(network_pairs):
        
        x = indexes[i][0]
        y = indexes[i][1]
        
        mask1 = roi_list == n1
        mask2 = roi_list == n2
        
        # Build the mask of the intersection between
        mask_roi = np.meshgrid(mask1, mask1)[1] * np.meshgrid(mask2, mask2)[0]
        
        value = np.sum(matrix * mask_roi)
        #value /= np.sum(mask_roi)
        
        aggregate_matrix[x, y] = value
    
    # Copy matrix in the lower part
    aggregate_matrix = copy_matrix(aggregate_matrix)
    
    # This is to fill the diagonal with within-network sum of elements
    for i, n in enumerate(unique_rois):
        
        diag_matrix, _ = network_connections(matrix, n, roi_list)
        aggregate_matrix[i, i] = np.sum(diag_matrix) 
        # aggregate_matrix[i, i] = np.mean(diag_matrix) 
    
    return aggregate_matrix
コード例 #7
0
def get_feature_selection_matrix(feature_set, n_features, mask):

    h_values_, _ = np.histogram(feature_set.flatten(),
                                bins=np.arange(0, n_features + 1))

    mask = np.triu(mask, k=1)
    mask_indices = np.nonzero(mask)
    mask[mask_indices] = h_values_

    return np.nan_to_num(copy_matrix(mask, diagonal_filler=0))
コード例 #8
0
def get_feature_selection_matrix(feature_set, n_features, mask):
    
    h_values_, _ = np.histogram(feature_set.flatten(), 
                                bins=np.arange(0, n_features+1))
    
    
    mask = np.triu(mask, k=1)
    mask_indices = np.nonzero(mask)
    mask[mask_indices] = h_values_
    
    return np.nan_to_num(copy_matrix(mask, diagonal_filler=0))
コード例 #9
0
    def transform(self, ds):

        data = np.dstack([copy_matrix(array_to_matrix(a)) for a in ds.samples])
        data = np.hstack([d for d in data[:, :]]).T

        attr = self._edit_attr(ds, data.shape)

        ds_ = Dataset.from_wizard(data)
        ds_ = add_attributes(ds_, attr)

        return ds_
コード例 #10
0
ファイル: base.py プロジェクト: robbisg/mvpa_itab_wu
def plot_seaborn(features, node_names=None, node_idx=None, **kwargs):
    from mne.viz import circular_layout
    node_angles = circular_layout(
        node_names.tolist(),
        node_names[node_idx].tolist(),
        start_pos=90,
        group_boundaries=[0, len(node_names) / 2. + 1])

    matrix = copy_matrix(array_to_matrix(features.values[0]),
                         diagonal_filler=0.)
    return plot_connectivity_seaborn(matrix,
                                     node_names=node_names,
                                     con_thresh=400,
                                     node_angles=node_angles,
                                     node_colors=sns.dark_palette(
                                         kwargs['color']))
コード例 #11
0
ファイル: utils.py プロジェクト: robbisg/mvpa_itab_wu
def get_feature_weights_matrix(weights, sets, mask, indices=None):
    """
    Function used to compute the average weight matrix in case of
    several cross-validation folds and feature selection for each
    fold.
    
    Parameters
    ----------
    weights : ndarray shape=(n_folds,  n_selected_features)
        The weights matrix with the shape specified in the signature
    sets : ndarray shape=(n_folds, n_selected_features)
        This represents the index in the square matrix of the feature selected 
        by the algorithm in each cross-validation fold
    mask : ndarray shape=(n_roi, n_roi)
        The mask matrix of the valid ROIs selected. Important: this matrix
        should be triangular with the lower part set to zero.
    indices : tuple
        This is equal to np.nonzero(mask)
        
    Returns
    -------
    matrix: ndarray n_roi x n_roi
        It returns the average weights across cross-validation fold in
        square form.
    
    """

    if indices is None:
        indices = np.nonzero(mask)

    weights = weights.squeeze()
    filling_vector = np.zeros(np.count_nonzero(mask))
    counting_vector = np.zeros(np.count_nonzero(mask))

    for s, w in zip(sets, weights):
        filling_vector[s] += zscore(w)
        counting_vector[s] += 1

    avg_weigths = np.nan_to_num(filling_vector / counting_vector)
    mask[indices] = avg_weigths
    matrix = np.nan_to_num(copy_matrix(mask, diagonal_filler=0))

    return matrix
コード例 #12
0
ファイル: plot.py プロジェクト: robbisg/mvpa_itab_wu
def plot_center_matrix(X, clustering, n_cluster=5, **kwargs):
    
    
    configuration = {
                     'node_number':[6,5,8,10,4,5,7],
                     'node_networks':['DAN','VAN','SMN','VIS','AUD','LAN','DMN'],
                     'save_fig':True,
                     'save_path':"/media/robbis/DATA/fmri/movie_viviana",
                     'save_name_condition':None
                     
                     }
    
    
    configuration.update(**kwargs)
    
    node_number = configuration['node_number']
    node_networks = configuration['node_networks']
    
    position = [sum(node_number[:i+1]) for i in range(len(node_number))]
    position_label = [-0.5+position[i]-node_number[i]/2. for i in range(len(node_number))]
    
    matrix_indices = np.arange(n_cluster**2).reshape(n_cluster, n_cluster) + 1
    
    fig = pl.figure(figsize=(25,20))
    for i in range(n_cluster-1):
        centers = get_centroids(X, clustering[i])
        for j, matrix in enumerate(centers):
            pos = matrix_indices[j,i+1]
            ax = fig.add_subplot(n_cluster, n_cluster, pos)
            matrix = copy_matrix(array_to_matrix(matrix), diagonal_filler=0)
            total_nodes = matrix.shape[0]
            ax.imshow(matrix, interpolation='nearest', vmin=0)
            for name, n_nodes in zip(node_networks, position):
                ax.vlines(n_nodes-0.5, -0.5, total_nodes-0.5)
                ax.hlines(n_nodes-0.5, -0.5, total_nodes-0.5)
            ax.set_xticks(position_label)
            ax.set_xticklabels(node_networks)
            ax.set_yticks(position_label)
            ax.set_yticklabels(node_networks)
            
            
    return fig
コード例 #13
0
def plot_center_matrix(X, clustering, n_cluster=5, **kwargs):

    configuration = {
        'node_number': [6, 5, 8, 10, 4, 5, 7],
        'node_networks': ['DAN', 'VAN', 'SMN', 'VIS', 'AUD', 'LAN', 'DMN'],
        'save_fig': True,
        'save_path': "/media/robbis/DATA/fmri/movie_viviana",
        'save_name_condition': None
    }

    configuration.update(**kwargs)

    node_number = configuration['node_number']
    node_networks = configuration['node_networks']

    position = [sum(node_number[:i + 1]) for i in range(len(node_number))]
    position_label = [
        -0.5 + position[i] - node_number[i] / 2.
        for i in range(len(node_number))
    ]

    matrix_indices = np.arange(n_cluster**2).reshape(n_cluster, n_cluster) + 1

    fig = pl.figure(figsize=(25, 20))
    for i in range(n_cluster - 1):
        centers = get_centroids(X, clustering[i])
        for j, matrix in enumerate(centers):
            pos = matrix_indices[j, i + 1]
            ax = fig.add_subplot(n_cluster, n_cluster, pos)
            matrix = copy_matrix(array_to_matrix(matrix), diagonal_filler=0)
            total_nodes = matrix.shape[0]
            ax.imshow(matrix, interpolation='nearest', vmin=0)
            for _, n_nodes in zip(node_networks, position):
                ax.vlines(n_nodes - 0.5, -0.5, total_nodes - 0.5)
                ax.hlines(n_nodes - 0.5, -0.5, total_nodes - 0.5)
            ax.set_xticks(position_label)
            ax.set_xticklabels(node_networks)
            ax.set_yticks(position_label)
            ax.set_yticklabels(node_networks)

    return fig
コード例 #14
0
def get_feature_weights_matrix(weights, sets, mask, indices):
    """
    Function used to compute the average weight matrix in case of
    several cross-validation folds and feature selection for each
    fold.
    
    Parameters
    ----------
    weights : ndarray shape n_folds x n_selected_features
        The weights matrix with the shape specified in the signature
    sets : ndarray shape n_folds x n_selected_features
        This represents the index in the square matrix of the feature selected 
        by the algorithm in each cross-validation fold
    mask : ndarray shape n_roi x n_roi 
        The mask matrix of the valid ROIs selected. Important: this matrix
        should be triangular with the lower part set to zero.
    indices : tuple
        This is equal to np.nonzero(mask)
        
    Returns
    -------
    matrix: ndarray n_roi x n_roi
        It returns the average weights across cross-validation fold in
        square form.
    
    """
    
    
    weights = weights.squeeze()
    filling_vector = np.zeros(np.count_nonzero(mask))
    counting_vector = np.zeros(np.count_nonzero(mask))
    
    for s, w in zip(sets, weights):
        filling_vector[s] += zscore(w)
        counting_vector[s] += 1
        
    avg_weigths = np.nan_to_num(filling_vector/counting_vector)
    mask[indices] = avg_weigths    
    matrix = np.nan_to_num(copy_matrix(mask, diagonal_filler=0))
    
    return matrix
コード例 #15
0
def plot_condition_centers(X, labels, **kwargs):

    configuration = {
        'node_number': [6, 5, 8, 10, 4, 5, 7],
        'node_networks': ['DAN', 'VAN', 'SMN', 'VIS', 'AUD', 'LAN', 'DMN'],
        'save_fig': True,
        'save_path': "/media/robbis/DATA/fmri/movie_viviana",
        'save_name_condition': None,
        'vmax': 1
    }

    configuration.update(**kwargs)
    vmax = configuration['vmax']
    node_number = configuration['node_number']
    node_networks = configuration['node_networks']
    centroids = get_centroids(X, labels)
    position = [sum(node_number[:i + 1]) for i in range(len(node_number))]
    position_label = [
        -0.5 + position[i] - node_number[i] / 2.
        for i in range(len(node_number))
    ]

    n_rows = np.floor(np.sqrt(len(np.unique(labels))))
    n_cols = np.ceil(len(np.unique(labels)) / n_rows)

    fig = pl.figure(figsize=(16, 13))
    for j, matrix in enumerate(centroids):
        ax = fig.add_subplot(n_rows, n_cols, j + 1)
        matrix = copy_matrix(array_to_matrix(matrix), diagonal_filler=0)
        total_nodes = matrix.shape[0]
        ax.imshow(matrix, interpolation='nearest', vmin=0, vmax=vmax)
        for _, n_nodes in zip(node_networks, position):
            ax.vlines(n_nodes - 0.5, -0.5, total_nodes - 0.5)
            ax.hlines(n_nodes - 0.5, -0.5, total_nodes - 0.5)
        ax.set_xticks(position_label)
        ax.set_xticklabels(node_networks, rotation=45)
        ax.set_yticks(position_label)
        ax.set_yticklabels(node_networks)

    return fig
コード例 #16
0
def plot_states_matrices(X, 
                         labels,
                         save_path,
                         condition_label,
                         node_number=[6,5,8,10,4,5,7], 
                         node_networks = ['DAN','VAN','SMN','VIS','AUD','LAN','DMN'],
                         use_centroid=False,
                         ):


    position = [sum(node_number[:i+1]) for i in range(len(node_number))]
    
    if not use_centroid:
        centroids = get_centroids(X, labels)
        total_nodes = len(np.unique(labels))
    else:
        centroids = X.copy()
        total_nodes = X.shape[0]
    
    position_label = [-0.5+position[i]-node_number[i]/2. for i in range(len(node_number))]
    
    for i in np.arange(total_nodes):
        fig = pl.figure()
        matrix_ = copy_matrix(array_to_matrix(centroids[i]))
        total_nodes = matrix_.shape[0]
        pl.imshow(matrix_, interpolation='nearest', vmin=0, vmax=1)
        for name, n_nodes in zip(node_networks, position):
            pl.vlines(n_nodes-0.5, -0.5, total_nodes-0.5)
            pl.hlines(n_nodes-0.5, -0.5, total_nodes-0.5)
        
        pl.title('State '+str(i+1))
        pl.xticks(position_label, node_networks)
        pl.yticks(position_label, node_networks)
        
        pl.colorbar()
        
        fname = "%s_state_%s.png" % (condition_label, str(i+1))
        
        pl.savefig(os.path.join(save_path, fname))
コード例 #17
0
ファイル: plot.py プロジェクト: robbisg/mvpa_itab_wu
def plot_condition_centers(X, labels, **kwargs):
    
    
    configuration = {
                     'node_number':[6,5,8,10,4,5,7],
                     'node_networks':['DAN','VAN','SMN','VIS','AUD','LAN','DMN'],
                     'save_fig':True,
                     'save_path':"/media/robbis/DATA/fmri/movie_viviana",
                     'save_name_condition':None,
                     'vmax':1                     
                     }
    
    
    configuration.update(**kwargs)
    vmax = configuration['vmax']
    node_number = configuration['node_number']
    node_networks = configuration['node_networks']
    centroids = get_centroids(X, labels)
    position = [sum(node_number[:i+1]) for i in range(len(node_number))]
    position_label = [-0.5+position[i]-node_number[i]/2. for i in range(len(node_number))]
    
    n_rows = np.floor(np.sqrt(len(np.unique(labels))))
    n_cols = np.ceil(len(np.unique(labels))/n_rows)
    
    fig = pl.figure(figsize=(16,13))
    for j, matrix in enumerate(centroids):
        ax = fig.add_subplot(n_rows, n_cols, j+1)
        matrix = copy_matrix(array_to_matrix(matrix), diagonal_filler=0)
        total_nodes = matrix.shape[0]
        ax.imshow(matrix, interpolation='nearest', vmin=0, vmax=vmax)
        for _, n_nodes in zip(node_networks, position):
            ax.vlines(n_nodes-0.5, -0.5, total_nodes-0.5)
            ax.hlines(n_nodes-0.5, -0.5, total_nodes-0.5)
        ax.set_xticks(position_label)
        ax.set_xticklabels(node_networks, rotation=45)
        ax.set_yticks(position_label)
        ax.set_yticklabels(node_networks)
        
    return fig
コード例 #18
0
def write_correlation_matrices(directory, condition):
    subjects = np.loadtxt(
        '/media/robbis/DATA/fmri/monks/attributes_struct.txt', dtype=np.str)

    roi_list = np.loadtxt(
        '/media/robbis/DATA/fmri/templates_fcmri/findlab_rois.txt',
        delimiter=',',
        dtype=np.str)

    path = '/media/robbis/DATA/fmri/monks/0_results/'
    conn = ConnectivityLoader(path, subjects, directory, roi_list)
    nan_mask = conn.get_results(['Samatha', 'Vipassana'])
    #nan_mask = conn.get_results(['Rest'])
    ds = conn.get_dataset()
    mask_ = np.float_(~np.bool_(nan_mask))
    mask_ = np.triu(mask_, k=1)
    mask_indices = np.nonzero(mask_)

    ds_ = ds[np.logical_and(ds.targets == condition, ds.sa.groups == 'E')]

    array_ = ds_.samples.mean(0)

    mask_[mask_indices] = array_
    matrix = np.nan_to_num(copy_matrix(mask_, diagonal_filler=0))

    names_lr, colors_lr, index_, coords, networks = get_atlas_info('findlab')

    plot_connectomics(
        matrix,
        20 + 8 * np.abs(matrix.sum(axis=1))**2,
        save_path=os.path.join(path, directory),
        prename=condition + '_correlation',
        save=True,
        colormap='bwr',
        vmin=np.abs(matrix).max() * -1,
        vmax=np.abs(matrix).max(),
        node_names=names_lr,
        node_colors=colors_lr,
        node_coords=coords,
        node_order=index_,
        networks=networks,
        threshold=0.5,
        title=condition + ' Correlation',
        zscore=False,
    )

    w_aggregate = aggregate_networks(matrix, roi_list.T[-2])
    _, idx = np.unique(networks, return_index=True)

    plot_connectomics(w_aggregate,
                      5 * np.abs(w_aggregate.sum(axis=1))**2,
                      save_path=os.path.join(path, directory),
                      prename=condition + '_aggregate_correlation',
                      save=True,
                      colormap='bwr',
                      vmin=-1 * w_aggregate.max(),
                      vmax=w_aggregate.max(),
                      node_names=np.unique(networks),
                      node_colors=colors_lr[idx],
                      node_coords=coords[idx],
                      node_order=np.arange(0, len(idx)),
                      networks=np.unique(networks),
                      threshold=4,
                      zscore=False)
コード例 #19
0
    w_array = feature_weights[med].copy()

    f_nz = f_array[np.nonzero(f_array)]

    # We selected only feature selected often
    threshold = f_nz.mean() + 0.5 * f_nz.std()
    # f_array[f_array < threshold] = 0
    # w_array[f_array < threshold] = 0 # Weights selected based on chosen features

    # zscoring weights
    w_nz = w_array[np.nonzero(w_array)]
    w_nz = (w_nz - np.mean(w_nz)) / np.std(w_nz)

    w_array[np.nonzero(w_array)] = w_nz

    f_matrix = copy_matrix(array_to_matrix(f_array, nan_mask), diagonal_filler=0)
    w_matrix = copy_matrix(array_to_matrix(w_array, nan_mask), diagonal_filler=0)

    title = "%s %s" % (med, l_)
    # f_matrix[f_matrix == 0] = np.nan
    ##################################################################################
    condition = med
    w_aggregate = aggregate_networks(w_matrix, roi_list.T[-2])

    names_lr, colors_lr, index_, coords, networks = get_atlas_info("findlab")

    _, idx = np.unique(networks, return_index=True)

    ##########################################################################

    plot_connectomics(
コード例 #20
0
def analyze_results(directory, 
                    conditions, 
                    n_permutations=1000.):
    
    
    """Write the results of the regression analysis

    Parameters
    ----------
    directory : string or list of strings
        Path or list of paths where put results.
    
    condition : string or list of strings
        Conditions to be analyzed.


    Returns
    -------
    fig : instance of matplotlib.pyplot.Figure
        The figure handle.

    """
    
    res_path = '/media/robbis/DATA/fmri/monks/0_results/'
    subjects = np.loadtxt('/media/robbis/DATA/fmri/monks/attributes_struct.txt',
                      dtype=np.str)

    path = '/media/robbis/DATA/fmri/monks/'
    roi_list = []
    roi_list = np.loadtxt('/media/robbis/DATA/fmri/templates_fcmri/findlab_rois.txt', 
                          delimiter=',',
                          dtype=np.str)
    
    if isinstance(directory, str):
        directory = [directory]
        
    if isinstance(conditions, str):
        conditions = [conditions]
        
    
    for dir_ in directory:
        for cond_ in conditions:
            
            fname_ = os.path.join(res_path, dir_, cond_+'_values_1000_50.npz')
            
            results_ = np.load(fname_)
            values_ = results_['arr_0'].tolist()
            errors_ = values_['error']      #values_['errors_']
            sets_ = values_['features']     #values_['sets_']
            weights_ = values_['weights']   #values_['weights_']
            samples_ = values_['subjects']  #values_['samples_']
            
            fname_ = os.path.join(res_path, dir_, cond_+'_permutation_1000_50.npz')
            
            results_ = np.load(fname_)
            values_p = results_['arr_0'].tolist()
            errors_p = values_p['error']        #values_p['errors_p']
            sets_p = values_p['features']       #values_p['sets_p']
            weights_p = values_p['weights']     #values_p['weights_p']
            samples_p = values_p['subjects']    #values_p['samples_p']
            
            errors_p = np.nanmean(errors_p, axis=1)
                        
            print('-----------'+dir_+'-------------')
            print(cond_)
            print ('MSE = '+str(errors_[:,0].mean())+' -- p '+ \
                str(np.count_nonzero(errors_p[:,0] < errors_[:,0].mean())/n_permutations))
            print('COR = '+str(np.nanmean(errors_[:,1]))+' -- p '+ \
                str(np.count_nonzero(errors_p[:,1] > np.nanmean(errors_[:,1]))/n_permutations))
                
            directory_ = dir_
            learner_ = "SVR_C_1" 
        
            prename = "%s_%s" %(cond_, learner_)
            
            ######## Get matrix infos ###############
            
            conn_test = ConnectivityLoader(res_path, 
                                         subjects, 
                                         directory_, 
                                         roi_list)
            
            # Get nan mask to correctly fill matrix
            nan_mask = conn_test.get_results(['Samatha', 'Vipassana'])
            # Transform matrix into float of ones
            mask_ = np.float_(~np.bool_(nan_mask))
            # Get the upper part of the matrix
            mask_ = np.triu(mask_, k=1)
            mask_indices = np.nonzero(mask_)
            n_bins = np.count_nonzero(mask_)
            
            
            ###### Plot of distributions of errors and permutations #########
            #errors_p = np.nanmean(errors_p, axis=1)
            
            fig_ = pl.figure()
            bpp = pl.boxplot(errors_p, showfliers=False, showmeans=True, patch_artist=True)
            bpv = pl.boxplot(errors_, showfliers=False, showmeans=True, patch_artist=True)
            fname = "%s_perm_1000_boxplot.png" %(prename)
           
            
            for box_, boxp_ in zip(bpv['boxes'], bpp['boxes']):
                box_.set_facecolor('lightgreen')
                boxp_.set_facecolor('lightslategrey')
              
              
            pl.xticks(np.array([1,2]), ['MSE', 'COR'])
            
            pl.savefig(os.path.join(res_path, directory_, fname))
            pl.close()
            
            n_permutations = np.float(errors_p[:,0].shape[0])
            
            
            ##### Plot of connection distributions ########
            
            pl.figure()
            h_values_p, _ = np.histogram(sets_p.flatten(), bins=np.arange(0, n_bins+1))
            #pl.plot(zscore(h_values_p))
            
            pl.hist(zscore(h_values_p), bins=25)
            
            fname = "%s_features_set_dist.png" %(prename)
            pl.savefig(os.path.join(res_path, directory_, fname))
            
            pl.figure()
            h_values_, _ = np.histogram(sets_.flatten(), bins=np.arange(0, n_bins+1))
            pl.plot(zscore(h_values_))
                
            
            fname = "%s_features_set_cross_validation.png" %(prename)
            pl.savefig(os.path.join(res_path, directory_, fname))
            
            pl.close('all')
            
            
            ######## Plot connectivity stuff ###########
            
            weights_ = weights_.squeeze()
            filling_vector = np.zeros(np.count_nonzero(mask_))
            counting_vector = np.zeros(np.count_nonzero(mask_))
            
            for s, w in zip(sets_, weights_):
                filling_vector[s] += zscore(w)
                counting_vector[s] += 1
            
            # Calculate the average weights and then zscore
            avg_weigths = np.nan_to_num(filling_vector/counting_vector)
            
            mask_[mask_indices] = avg_weigths
            
            matrix_ = np.nan_to_num(copy_matrix(mask_, diagonal_filler=0))
        
            names_lr, colors_lr, index_, coords, _ = get_atlas_info(dir_)
            
            '''
            matrix_[matrix_ == 0] = np.nan
            matrix_[np.abs(matrix_) < 1] = np.nan
            '''
            size_w = np.zeros_like(matrix_)
            size_w[mask_indices] = np.abs(avg_weigths)
            size_w = np.nan_to_num(copy_matrix(size_w, diagonal_filler=0))
            size_w = np.sum(size_w, axis=0)
            
            f, _ = plot_connectivity_circle_edited(matrix_[index_][:,index_], 
                                            names_lr[index_], 
                                            node_colors=colors_lr[index_],
                                            node_size=2*size_w[index_]**2,
                                            con_thresh = 1.4,
                                            title=cond_,
                                            node_angles=circular_layout(names_lr, 
                                                                        list(names_lr),
                                                                        ),
                                            fontsize_title=19,
                                            fontsize_names=13,
                                            fontsize_colorbar=13,
                                            colorbar_size=0.3,
                                            colormap='bwr',
                                            #colormap=cm_,
                                            vmin=-3.,
                                            vmax=3.,
                                            fig=pl.figure(figsize=(16,16))
                                            )
            
            
            fname = "%s_features_weight.png" %(prename)
            f.savefig(os.path.join(res_path, directory_, fname),
                      facecolor='black',
                      dpi=150)
            for d_ in ['x', 'y', 'z']:
                fname = "%s_connectome_feature_weight_%s.png" %(prename, d_)
                fname = os.path.join(res_path, directory_, fname)
                plot_connectome(matrix_, 
                                coords, 
                                colors_lr, 
                                2*size_w**2,
                                1.4,
                                fname,
                                #cmap=pl.cm.bwr,
                                title=None,
                                display_=d_,
                                #max_=3.,
                                #min_=3. 
                                )
            fname = "%s_connections_list_feature_weights.txt" %(prename)
            fname = os.path.join(res_path, directory_, fname)
            #print_connections(matrix_, names_lr, fname)
            
            #########
            mask_ = np.float_(~np.bool_(nan_mask))
            mask_ = np.triu(mask_, k=1)
            mask_indices = np.nonzero(mask_)
            mask_[mask_indices] = h_values_
            matrix_ = np.nan_to_num(copy_matrix(mask_, diagonal_filler=0))
            
            size_ = np.zeros_like(matrix_)
            size_[mask_indices] = counting_vector
            size_ = np.nan_to_num(copy_matrix(size_, diagonal_filler=0))
            size_ = np.sum(size_, axis=0)
            
            f, _ = plot_connectivity_circle_edited(matrix_[index_][:,index_], 
                                            names_lr[index_], 
                                            node_colors=colors_lr[index_],
                                            node_size=size_[index_]*5,
                                            con_thresh = 15.,
                                            title=cond_,
                                            node_angles=circular_layout(names_lr, 
                                                                        list(names_lr),
                                                                        ),
                                            fontsize_title=19,
                                            fontsize_names=13,
                                            fontsize_colorbar=13,
                                            colorbar_size=0.3,
                                            #colormap='bwr',
                                            #colormap='terrain',
                                            #vmin=40,
                                            fig=pl.figure(figsize=(16,16))
                                            )
            
            fname = "%s_features_choices.png" %(prename)
            f.savefig(os.path.join(res_path, directory_, fname),
                      facecolor='black',
                      dpi=150)
            
            for d_ in ['x', 'y', 'z']:
                fname = "%s_connectome_feature_choices_%s.png" %(prename, d_)
                fname = os.path.join(res_path, directory_, fname)
                
                plot_connectome(matrix_, 
                                coords, 
                                colors_lr, 
                                4.*size_,
                                15.,
                                fname,
                                title=None,
                                max_=50.,
                                min_=0.,
                                display_=d_
                                )
                
            fname = "%s_connections_list_feature_choices.txt" %(prename)
            fname = os.path.join(res_path, directory_, fname)
            #print_connections(matrix_, names_lr,fname)
            
            pl.close('all')
コード例 #21
0
def write_correlation_matrices(directory, condition):
    subjects = np.loadtxt('/media/robbis/DATA/fmri/monks/attributes_struct.txt',
                      dtype=np.str)
    
    roi_list = np.loadtxt('/media/robbis/DATA/fmri/templates_fcmri/findlab_rois.txt', 
                          delimiter=',',
                          dtype=np.str)
    
    
    path = '/media/robbis/DATA/fmri/monks/0_results/'
    conn = ConnectivityLoader(path, subjects, directory, roi_list)
    nan_mask = conn.get_results(['Samatha', 'Vipassana'])
    #nan_mask = conn.get_results(['Rest'])
    ds = conn.get_dataset()
    mask_ = np.float_(~np.bool_(nan_mask))
    mask_ = np.triu(mask_, k=1)
    mask_indices = np.nonzero(mask_)
    
    ds_ = ds[np.logical_and(ds.targets == condition, ds.sa.groups == 'E')]
    
    array_ = ds_.samples.mean(0)
    
    mask_[mask_indices] = array_    
    matrix = np.nan_to_num(copy_matrix(mask_, diagonal_filler=0))
    
    names_lr, colors_lr, index_, coords, networks = get_atlas_info('findlab')
    
    plot_connectomics(matrix,
                          20+8*np.abs(matrix.sum(axis=1))**2, 
                          save_path=os.path.join(path, directory), 
                          prename=condition+'_correlation', 
                          save=True,
                          colormap='bwr',
                          vmin=np.abs(matrix).max()*-1,
                          vmax=np.abs(matrix).max(),
                          node_names=names_lr,
                          node_colors=colors_lr,
                          node_coords=coords,
                          node_order=index_,
                          networks=networks,
                          threshold=0.5,
                          title=condition+' Correlation',
                          zscore=False,       
                          )
    
    w_aggregate = aggregate_networks(matrix, roi_list.T[-2])
    _, idx = np.unique(networks, return_index=True)
    
    plot_connectomics(w_aggregate, 
                      5*np.abs(w_aggregate.sum(axis=1))**2, 
                      save_path=os.path.join(path, directory), 
                      prename=condition+'_aggregate_correlation', 
                      save=True,
                      colormap='bwr',
                      vmin=-1*w_aggregate.max(),
                      vmax=w_aggregate.max(),
                      node_names=np.unique(networks),
                      node_colors=colors_lr[idx],
                      node_coords=coords[idx],
                      node_order=np.arange(0, len(idx)),
                      networks=np.unique(networks),
                      threshold=4,
                      zscore=False                
                      )