コード例 #1
0
    def test_mean_argument(self):

        with pytest.raises(ModelSpecificationError):
            dtype = 'float64'

            net = nn.HybridSequential(prefix='nn_')
            with net.name_scope():
                net.add(
                    nn.Dense(1,
                             flatten=False,
                             activation="tanh",
                             in_units=2,
                             dtype=dtype))
            net.initialize(mx.init.Xavier(magnitude=3))

            rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
            X_var = Variable(shape=(5, 2))
            X_cond_var = Variable(shape=(8, 2))
            Y_cond_var = Variable(shape=(8, 1))
            mean_func = MXFusionGluonFunction(net,
                                              num_outputs=1,
                                              broadcastable=True)
            mean_var = mean_func(X_var)
            mean_cond_var = mean_func(X_cond_var)
            gp = ConditionalGaussianProcess.define_variable(
                X=X_var,
                X_cond=X_cond_var,
                Y_cond=Y_cond_var,
                mean_cond=mean_cond_var,
                kernel=rbf,
                shape=(5, 1),
                dtype=dtype)
コード例 #2
0
        def test_kernel_as_MXFusionFunction(self, dtype, X, X_isSamples, X2,
            X2_isSamples, lengthscale, lengthscale_isSamples, variance,
            variance_isSamples, num_samples, input_dim, ARD):

            X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
            X2_mx = prepare_mxnet_array(X2, X2_isSamples, dtype)
            var_mx = prepare_mxnet_array(variance, variance_isSamples, dtype)
            l_mx = prepare_mxnet_array(lengthscale, lengthscale_isSamples,
                                       dtype)

            X_mf = Variable(shape=X.shape)
            l_mf = Variable(shape=lengthscale.shape)
            var_mf = Variable(shape=variance.shape)
            rbf = RBF(input_dim, ARD, 1., 1., 'rbf', None, dtype)
            eval = rbf(X_mf, rbf_lengthscale=l_mf, rbf_variance=var_mf).factor
            variables = {eval.X.uuid: X_mx, eval.rbf_lengthscale.uuid: l_mx, eval.rbf_variance.uuid: var_mx}
            res_eval = eval.eval(F=mx.nd, variables=variables)
            kernel_params = rbf.fetch_parameters(variables)
            res_direct = rbf.K(F=mx.nd, X=X_mx, **kernel_params)
            assert np.allclose(res_eval.asnumpy(), res_direct.asnumpy())

            X_mf = Variable(shape=X.shape)
            X2_mf = Variable(shape=X2.shape)
            l_mf = Variable(shape=lengthscale.shape)
            var_mf = Variable(shape=variance.shape)
            rbf = RBF(input_dim, ARD, 1., 1., 'rbf', None, dtype)
            eval = rbf(X_mf, X2_mf, rbf_lengthscale=l_mf, rbf_variance=var_mf).factor
            variables = {eval.X.uuid: X_mx, eval.X2.uuid: X2_mx, eval.rbf_lengthscale.uuid: l_mx, eval.rbf_variance.uuid: var_mx}
            res_eval = eval.eval(F=mx.nd, variables=variables)
            kernel_params = rbf.fetch_parameters(variables)
            res_direct = rbf.K(F=mx.nd, X=X_mx, X2=X2_mx, **kernel_params)
            assert np.allclose(res_eval.asnumpy(), res_direct.asnumpy())
コード例 #3
0
    def test_draw_samples_with_broadcast_no_numpy_verification(self, dtype, a, a_is_samples, rv_shape, num_samples):
        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)

        dirichlet = Dirichlet.define_variable(alpha=Variable(), shape=rv_shape, dtype=dtype).factor
        variables = {dirichlet.alpha.uuid: a_mx}
        draw_samples_rt = dirichlet.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert draw_samples_rt.shape == (5,) + rv_shape
コード例 #4
0
    def test_draw_samples_no_broadcast(self, dtype, a, a_is_samples, rv_shape, num_samples):
        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)

        rand = np.random.gamma(shape=a, scale=np.ones(a.shape), size=(num_samples,)+rv_shape)
        draw_samples_np = rand / np.sum(rand)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        dirichlet = Dirichlet.define_variable(alpha=Variable(), shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {dirichlet.alpha.uuid: a_mx}
        draw_samples_rt = dirichlet.draw_samples(F=mx.nd, variables=variables, num_samples=num_samples)

        assert np.issubdtype(draw_samples_rt.dtype, dtype)
        assert np.allclose(draw_samples_np, draw_samples_rt.asnumpy())
コード例 #5
0
    def make_gpregr_model(self, lengthscale, variance, noise_var):
        from mxfusion.models import Model
        from mxfusion.components.variables import Variable, PositiveTransformation
        from mxfusion.modules.gp_modules import GPRegression
        from mxfusion.components.distributions.gp.kernels import RBF

        dtype = 'float64'
        m = Model()
        m.N = Variable()
        m.X = Variable(shape=(m.N, 3))
        m.noise_var = Variable(transformation=PositiveTransformation(),
                               initial_value=mx.nd.array(noise_var,
                                                         dtype=dtype))
        kernel = RBF(input_dim=3,
                     ARD=True,
                     variance=mx.nd.array(variance, dtype=dtype),
                     lengthscale=mx.nd.array(lengthscale, dtype=dtype),
                     dtype=dtype)
        m.Y = GPRegression.define_variable(X=m.X,
                                           kernel=kernel,
                                           noise_var=m.noise_var,
                                           shape=(m.N, 1),
                                           dtype=dtype)
        return m
コード例 #6
0
    def test_log_pdf_with_broadcast(self, dtype, a, a_is_samples, rv, rv_is_samples, num_samples):
        # Add sample dimension if varaible is not samples
        a_mx = mx.nd.array(a, dtype=dtype)
        if not a_is_samples:
            a_mx = add_sample_dimension(mx.nd, a_mx)
        a = a_mx.asnumpy()

        rv_mx = mx.nd.array(rv, dtype=dtype)
        if not rv_is_samples:
            rv_mx = add_sample_dimension(mx.nd, rv_mx)
        rv = rv_mx.asnumpy()

        is_samples_any = a_is_samples or rv_is_samples
        rv_shape = rv.shape[1:]

        n_dim = 1 + len(rv.shape) if is_samples_any and not rv_is_samples else len(rv.shape)
        a_np = np.broadcast_to(a, (num_samples, 3, 2))
        rv_np = numpy_array_reshape(rv, is_samples_any, n_dim)

        # Initialize rand_gen
        rand = np.random.rand(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(mx.nd.array(rand.flatten(), dtype=dtype))

        # Calculate correct Dirichlet logpdf
        r = []
        for s in range(len(rv_np)):
            a = []
            for i in range(len(rv_np[s])):
                a.append(scipy_dirichlet.logpdf(rv_np[s][i]/sum(rv_np[s][i]), a_np[s][i]))
            r.append(a)
        log_pdf_np = np.array(r)

        dirichlet = Dirichlet.define_variable(alpha=Variable(), shape=rv_shape, dtype=dtype, rand_gen=rand_gen).factor
        variables = {dirichlet.alpha.uuid: a_mx, dirichlet.random_variable.uuid: rv_mx}
        log_pdf_rt = dirichlet.log_pdf(F=mx.nd, variables=variables)

        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == is_samples_any
        if is_samples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples, (get_num_samples(mx.nd, log_pdf_rt), num_samples)
        assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy())
コード例 #7
0
    def test_log_pdf(self, dtype, X, X_isSamples, X_cond, X_cond_isSamples,
                     Y_cond, Y_cond_isSamples, rbf_lengthscale,
                     rbf_lengthscale_isSamples, rbf_variance,
                     rbf_variance_isSamples, rv, rv_isSamples, num_samples):
        from scipy.linalg.lapack import dtrtrs
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        X_cond_mx = prepare_mxnet_array(X_cond, X_cond_isSamples, dtype)
        Y_cond_mx = prepare_mxnet_array(Y_cond, Y_cond_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        rv_mx = prepare_mxnet_array(rv, rv_isSamples, dtype)
        rv_shape = rv.shape[1:] if rv_isSamples else rv.shape

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        X_cond_var = Variable(shape=(8, 2))
        Y_cond_var = Variable(shape=(8, 1))
        gp = ConditionalGaussianProcess.define_variable(X=X_var,
                                                        X_cond=X_cond_var,
                                                        Y_cond=Y_cond_var,
                                                        kernel=rbf,
                                                        shape=rv_shape,
                                                        dtype=dtype).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.X_cond.uuid: X_cond_mx,
            gp.Y_cond.uuid: Y_cond_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.random_variable.uuid: rv_mx
        }
        log_pdf_rt = gp.log_pdf(F=mx.nd, variables=variables).asnumpy()

        log_pdf_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            X_cond_i = X_cond[i] if X_cond_isSamples else X_cond
            Y_cond_i = Y_cond[i] if Y_cond_isSamples else Y_cond
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rv_i = rv[i] if rv_isSamples else rv
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            Kc_np = rbf_np.K(X_cond_i, X_i)
            Kcc_np = rbf_np.K(X_cond_i)

            L = np.linalg.cholesky(Kcc_np)
            LInvY = dtrtrs(L, Y_cond_i, lower=1, trans=0)[0]
            LinvKxt = dtrtrs(L, Kc_np, lower=1, trans=0)[0]

            mu = LinvKxt.T.dot(LInvY)
            cov = K_np - LinvKxt.T.dot(LinvKxt)
            log_pdf_np.append(
                multivariate_normal.logpdf(rv_i[:, 0], mean=mu[:, 0], cov=cov))
        log_pdf_np = np.array(log_pdf_np)
        isSamples_any = any([
            X_isSamples, rbf_lengthscale_isSamples, rbf_variance_isSamples,
            rv_isSamples
        ])
        assert np.issubdtype(log_pdf_rt.dtype, dtype)
        assert array_has_samples(mx.nd, log_pdf_rt) == isSamples_any
        if isSamples_any:
            assert get_num_samples(mx.nd, log_pdf_rt) == num_samples
        assert np.allclose(log_pdf_np, log_pdf_rt)
コード例 #8
0
    def test_draw_samples_w_mean(self, dtype, X, X_isSamples, X_cond,
                                 X_cond_isSamples, Y_cond, Y_cond_isSamples,
                                 rbf_lengthscale, rbf_lengthscale_isSamples,
                                 rbf_variance, rbf_variance_isSamples,
                                 rv_shape, num_samples):
        net = nn.HybridSequential(prefix='nn_')
        with net.name_scope():
            net.add(
                nn.Dense(rv_shape[-1],
                         flatten=False,
                         activation="tanh",
                         in_units=X.shape[-1],
                         dtype=dtype))
        net.initialize(mx.init.Xavier(magnitude=3))

        from scipy.linalg.lapack import dtrtrs
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        X_cond_mx = prepare_mxnet_array(X_cond, X_cond_isSamples, dtype)
        Y_cond_mx = prepare_mxnet_array(Y_cond, Y_cond_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)
        mean_mx = net(X_mx)
        mean_np = mean_mx.asnumpy()
        mean_cond_mx = net(X_cond_mx)
        mean_cond_np = mean_cond_mx.asnumpy()

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        X_cond_var = Variable(shape=(8, 2))
        Y_cond_var = Variable(shape=(8, 1))
        mean_func = MXFusionGluonFunction(net,
                                          num_outputs=1,
                                          broadcastable=True)
        mean_var = mean_func(X_var)
        mean_cond_var = mean_func(X_cond_var)
        gp = ConditionalGaussianProcess.define_variable(
            X=X_var,
            X_cond=X_cond_var,
            Y_cond=Y_cond_var,
            mean=mean_var,
            mean_cond=mean_cond_var,
            kernel=rbf,
            shape=rv_shape,
            dtype=dtype,
            rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.X_cond.uuid: X_cond_mx,
            gp.Y_cond.uuid: Y_cond_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx,
            gp.mean.uuid: mean_mx,
            gp.mean_cond.uuid: mean_cond_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            X_cond_i = X_cond[i] if X_cond_isSamples else X_cond
            Y_cond_i = Y_cond[i] if Y_cond_isSamples else Y_cond
            Y_cond_i = Y_cond_i - mean_cond_np[
                i] if X_cond_isSamples else Y_cond_i - mean_cond_np[0]
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            Kc_np = rbf_np.K(X_cond_i, X_i)
            Kcc_np = rbf_np.K(X_cond_i)

            L = np.linalg.cholesky(Kcc_np)
            LInvY = dtrtrs(L, Y_cond_i, lower=1, trans=0)[0]
            LinvKxt = dtrtrs(L, Kc_np, lower=1, trans=0)[0]

            mu = LinvKxt.T.dot(LInvY)
            cov = K_np - LinvKxt.T.dot(LinvKxt)
            L_cov_np = np.linalg.cholesky(cov)
            sample_np = mu + L_cov_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np) + mean_np
        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)
コード例 #9
0
    def test_draw_samples(self, dtype, X, X_isSamples, X_cond,
                          X_cond_isSamples, Y_cond, Y_cond_isSamples,
                          rbf_lengthscale, rbf_lengthscale_isSamples,
                          rbf_variance, rbf_variance_isSamples, rv_shape,
                          num_samples):
        from scipy.linalg.lapack import dtrtrs
        X_mx = prepare_mxnet_array(X, X_isSamples, dtype)
        X_cond_mx = prepare_mxnet_array(X_cond, X_cond_isSamples, dtype)
        Y_cond_mx = prepare_mxnet_array(Y_cond, Y_cond_isSamples, dtype)
        rbf_lengthscale_mx = prepare_mxnet_array(rbf_lengthscale,
                                                 rbf_lengthscale_isSamples,
                                                 dtype)
        rbf_variance_mx = prepare_mxnet_array(rbf_variance,
                                              rbf_variance_isSamples, dtype)

        rand = np.random.randn(num_samples, *rv_shape)
        rand_gen = MockMXNetRandomGenerator(
            mx.nd.array(rand.flatten(), dtype=dtype))

        rbf = RBF(2, True, 1., 1., 'rbf', None, dtype)
        X_var = Variable(shape=(5, 2))
        X_cond_var = Variable(shape=(8, 2))
        Y_cond_var = Variable(shape=(8, 1))
        gp = ConditionalGaussianProcess.define_variable(
            X=X_var,
            X_cond=X_cond_var,
            Y_cond=Y_cond_var,
            kernel=rbf,
            shape=rv_shape,
            dtype=dtype,
            rand_gen=rand_gen).factor

        variables = {
            gp.X.uuid: X_mx,
            gp.X_cond.uuid: X_cond_mx,
            gp.Y_cond.uuid: Y_cond_mx,
            gp.rbf_lengthscale.uuid: rbf_lengthscale_mx,
            gp.rbf_variance.uuid: rbf_variance_mx
        }
        samples_rt = gp.draw_samples(F=mx.nd,
                                     variables=variables,
                                     num_samples=num_samples).asnumpy()

        samples_np = []
        for i in range(num_samples):
            X_i = X[i] if X_isSamples else X
            X_cond_i = X_cond[i] if X_cond_isSamples else X_cond
            Y_cond_i = Y_cond[i] if Y_cond_isSamples else Y_cond
            lengthscale_i = rbf_lengthscale[
                i] if rbf_lengthscale_isSamples else rbf_lengthscale
            variance_i = rbf_variance[
                i] if rbf_variance_isSamples else rbf_variance
            rand_i = rand[i]
            rbf_np = GPy.kern.RBF(input_dim=2, ARD=True)
            rbf_np.lengthscale = lengthscale_i
            rbf_np.variance = variance_i
            K_np = rbf_np.K(X_i)
            Kc_np = rbf_np.K(X_cond_i, X_i)
            Kcc_np = rbf_np.K(X_cond_i)

            L = np.linalg.cholesky(Kcc_np)
            LInvY = dtrtrs(L, Y_cond_i, lower=1, trans=0)[0]
            LinvKxt = dtrtrs(L, Kc_np, lower=1, trans=0)[0]

            mu = LinvKxt.T.dot(LInvY)
            cov = K_np - LinvKxt.T.dot(LinvKxt)
            L_cov_np = np.linalg.cholesky(cov)
            sample_np = mu + L_cov_np.dot(rand_i)
            samples_np.append(sample_np)
        samples_np = np.array(samples_np)
        assert np.issubdtype(samples_rt.dtype, dtype)
        assert get_num_samples(mx.nd, samples_rt) == num_samples
        assert np.allclose(samples_np, samples_rt)