lr = 0.0005
beta1 = 0.5
batch_size = 100
rand_shape = (batch_size, 100)
num_epoch = 100
data_shape = (batch_size, 1, 28, 28)
context = mx.gpu()

logging.basicConfig(level=logging.DEBUG, format='%(asctime)-15s %(message)s')
sym_gen = generator.dcgan28x28(oshape=data_shape, ngf=32, final_act="sigmoid")
encoder = encoder.lenet()
encoder = ops.minibatch_layer(encoder, batch_size, num_kernels=100)

gmod = module.GANModule(sym_gen,
                        symbol_encoder=encoder,
                        context=context,
                        data_shape=data_shape,
                        code_shape=rand_shape)

gmod.init_params(mx.init.Xavier(factor_type="in", magnitude=2.34))

gmod.init_optimizer(optimizer="adam",
                    optimizer_params={
                        "learning_rate": lr,
                        "wd": 0.,
                        "beta1": beta1,
                    })

data_dir = './../../mxnet/example/image-classification/mnist/'
train = mx.io.MNISTIter(image=data_dir + "train-images-idx3-ubyte",
                        label=data_dir + "train-labels-idx1-ubyte",
コード例 #2
0
ngf = 64
lr = 0.0003
beta1 = 0.5
batch_size = 100
rand_shape = (batch_size, 100)
num_epoch = 100
data_shape = (batch_size, 3, 32, 32)
context = mx.gpu()

logging.basicConfig(level=logging.DEBUG, format='%(asctime)-15s %(message)s')
sym_gen = generator.dcgan32x32(oshape=data_shape, ngf=ngf, final_act="tanh")
sym_dec = encoder.dcgan(ngf=ngf / 2)
gmod = module.GANModule(sym_gen,
                        sym_dec,
                        context=context,
                        data_shape=data_shape,
                        code_shape=rand_shape)

gmod.modG.init_params(mx.init.Normal(0.05))
gmod.modD.init_params(mx.init.Xavier(factor_type="in", magnitude=2.34))

gmod.init_optimizer(optimizer="adam",
                    optimizer_params={
                        "learning_rate": lr,
                        "wd": 0.,
                        "beta1": beta1,
                    })

data_dir = './../../mxnet/example/image-classification/cifar10/'
train = mx.io.ImageRecordIter(path_imgrec=data_dir + "train.rec",