コード例 #1
0
def vgg_block(num_convs, channels):
    """
    define the basic structure of vgg
    structure: n convolution with 3x3 kernel, a 2x2 pooling

    mgnn.Sequential() is a structure for building net work, see: http://zh.gluon.ai/chapter_gluon-basics/index.html
    :param num_convs:
    :param channels:
    :return:
    """
    out = mgnn.Sequential()
    for _ in range(channels):
        out.add(
            mgnn.Conv2D(channels=channels,
                        kernel_size=3,
                        padding=1,
                        activation='relu'))
    out.add(mgnn.MaxPool2D(pool_size=2, strides=2))
    return out
コード例 #2
0
    def __init__(self,
                 block,
                 layers,
                 channels,
                 classes=1000,
                 thumbnail=False,
                 **kwargs):
        super(ResNetV2, self).__init__(channels, classes, **kwargs)
        assert len(layers) == len(channels) - 1

        # self.features.add(nn.BatchNorm(scale=False, center=False))
        self.features.add(nn.BatchNorm(scale=False, epsilon=2e-5))
        if thumbnail:
            self.features.add(
                nn.Conv2D(channels[0],
                          kernel_size=3,
                          strides=1,
                          padding=1,
                          in_channels=0))
        else:
            self.features.add(nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
            # fix_gamma=False missing ?
            self.features.add(nn.BatchNorm())
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.MaxPool2D(3, 2, 1))

        in_channels = channels[0]
        for i, num_layer in enumerate(layers):
            stride = 1 if i == 0 else 2
            self.features.add(
                self._make_layer(block,
                                 num_layer,
                                 channels[i + 1],
                                 stride,
                                 i + 1,
                                 in_channels=in_channels))
            in_channels = channels[i + 1]

        # fix_gamma=False missing ?
        self.features.add(nn.BatchNorm())
        self.features.add(nn.Activation('relu'))
        self.features.add(nn.GlobalAvgPool2D())
        self.features.add(nn.Flatten())
コード例 #3
0
    def __init__(self,num_class,verbose = False,**kwargs):
        super(ResNet,self).__init__(**kwargs)
        self.verbose = verbose
        with self.name_scope():
            # block 1
            b1 = nn.Conv2D(64,kernel_size=7,strides=2)
            # block 2
            b2 = nn.Sequential()
            b2.add(
                nn.MaxPool2D(pool_size=3,strides=2),
                Residual(64),
                Residual(64)
            )

            # block 3
            b3 = nn.Sequential()
            b3.add(
                Residual(128,same_shape=False),
                Residual(128)
            )

            # block 4
            b4 = nn.Sequential()
            b4.add(
                Residual(256,same_shape=False),
                Residual(256)
            )

            # block 5
            b5 = nn.Sequential()
            b5.add(
                Residual(512,same_shape=False),
                Residual(512)
            )

            # block 6
            b6 = nn.Sequential()
            b6.add(
                nn.AvgPool2D(pool_size=3),
                nn.Dense(num_class))
            
            self.net = nn.Sequential()
            self.net.add(b1,b2,b3,b4,b5,b6)
コード例 #4
0
 def __init__(self, c1, c2, c3, c4, **kwargs):
     super(Inception, self).__init__(**kwargs)
     # line one: 1 \to 1 convolution layer
     self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
     # line two: 1 \to 1 convolution layer followed by 3\ to 3 convolution layer
     self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
     self.p2_2 = nn.Conv2D(c2[1],
                           kernel_size=3,
                           padding=1,
                           activation='relu')
     # line three: 1 \to 1 convolution layer followed by 5\ to 5 convolution layer
     self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
     self.p3_2 = nn.Conv2D(c3[1],
                           kernel_size=5,
                           padding=2,
                           activation='relu')
     # line four: 3 \to 3 maxpooling followed by 1 \to 1 convolution layer
     self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
     self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
コード例 #5
0
    def __init__(self,
                 channels,
                 final_block_channels,
                 transpose_descriptors=True,
                 hybridizable=True,
                 batch_size=1,
                 in_size=(224, 224),
                 in_channels=1,
                 **kwargs):
        super(SuperPointNet, self).__init__(**kwargs)
        assert ((batch_size is not None) or not hybridizable)
        assert ((in_size is not None) or not hybridizable)
        self.batch_size = batch_size
        self.in_size = in_size

        with self.name_scope():
            self.features = nn.HybridSequential(prefix="")
            for i, channels_per_stage in enumerate(channels):
                stage = nn.HybridSequential(prefix="stage{}_".format(i + 1))
                for j, out_channels in enumerate(channels_per_stage):
                    if (j == 0) and (i != 0):
                        stage.add(nn.MaxPool2D(pool_size=2, strides=2))
                    stage.add(
                        vgg_conv3x3(in_channels=in_channels,
                                    out_channels=out_channels,
                                    use_bias=True,
                                    use_bn=False))
                    in_channels = out_channels
                self.features.add(stage)

            self.detector = SPDetector(in_channels=in_channels,
                                       mid_channels=final_block_channels,
                                       hybridizable=hybridizable,
                                       batch_size=batch_size,
                                       in_size=in_size)

            self.descriptor = SPDescriptor(
                in_channels=in_channels,
                mid_channels=final_block_channels,
                transpose_descriptors=transpose_descriptors,
                hybridizable=hybridizable,
                batch_size=batch_size,
                in_size=in_size)
コード例 #6
0
 def __init__(self, n1_1, n2_1, n2_3, n3_1, n3_5, n4_1, **kwargs):
     super(Inception, self).__init__(**kwargs)
     # path 1
     self.p1_conv_1 = nn.Conv2D(n1_1, kernel_size=1, activation='relu')
     # path 2
     self.p2_conv_1 = nn.Conv2D(n2_1, kernel_size=1, activation='relu')
     self.p2_conv_3 = nn.Conv2D(n2_3,
                                kernel_size=3,
                                padding=1,
                                activation='relu')
     # path 3
     self.p3_conv_1 = nn.Conv2D(n3_1, kernel_size=1, activation='relu')
     self.p3_conv_5 = nn.Conv2D(n3_5,
                                kernel_size=5,
                                padding=2,
                                activation='relu')
     # path 4
     self.p4_pool_3 = nn.MaxPool2D(pool_size=3, padding=1, strides=1)
     self.p4_conv_1 = nn.Conv2D(n4_1, kernel_size=1, activation='relu')
コード例 #7
0
def dense_net():
    net = nn.HybridSequential()
    # add name_scope on the outermost Sequential
    with net.name_scope():
        # first block
        net.add(nn.Conv2D(init_channels, kernel_size=7, strides=2, padding=3),
                nn.BatchNorm(), nn.Activation('relu'),
                nn.MaxPool2D(pool_size=3, strides=2, padding=1))
        # dense blocks
        channels = init_channels
        for i, layers in enumerate(block_layers):
            net.add(DenseBlock(layers, growth_rate))
            channels += layers * growth_rate
            if i != len(block_layers) - 1:
                net.add(transition_block(channels // 2))
        # last block
        net.add(nn.BatchNorm(), nn.Activation('relu'),
                nn.AvgPool2D(pool_size=1), nn.Flatten(), nn.Dense(num_classes))
    return net
コード例 #8
0
    def _make_layers(self, cfg, use_bias, use_bn):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2D(pool_size=2, strides=2)]
            else:
                if use_bn:
                    layers += [
                        nn.Conv2D(in_channels=in_channels,
                                  channels=x,
                                  kernel_size=(3, 3),
                                  padding=(1, 1),
                                  use_bias=False),
                        nn.BatchNorm(),
                        nn.Activation('relu')
                    ]
                elif use_bias:
                    layers += [
                        nn.Conv2D(in_channels=in_channels,
                                  channels=x,
                                  kernel_size=(3, 3),
                                  padding=(1, 1),
                                  use_bias=True),
                        nn.Activation('relu')
                    ]
                else:
                    layers += [
                        nn.Conv2D(in_channels=in_channels,
                                  channels=x,
                                  kernel_size=(3, 3),
                                  padding=(1, 1),
                                  use_bias=False),
                        nn.Activation('relu')
                    ]

                in_channels = x

        with self.name_scope():
            model = nn.HybridSequential(prefix='features_')
            for block in layers:
                model.add(block)
        return model
コード例 #9
0
    def __init__(self, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)

        self.p1 = nn.Conv2D(channels=c1, kernel_size=1, activation='relu')

        self.p2_1 = nn.Conv2D(channels=c2[0], kernel_size=1, activation='relu')
        self.p2_2 = nn.Conv2D(channels=c2[1],
                              kernel_size=3,
                              padding=1,
                              activation='relu')

        self.p3_1 = nn.Conv2D(channels=c3[0], kernel_size=1, activation='relu')
        self.p3_2 = nn.Conv2D(channels=c3[1],
                              kernel_size=5,
                              padding=2,
                              activation='relu')

        self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
        self.p4_2 = nn.Conv2D(channels=c4, kernel_size=1, activation='relu')
コード例 #10
0
    def __init__(self,
                 channels,
                 size1=14,
                 scale=(1, 2, 1),
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(AttentionModule_stage3, self).__init__(**kwargs)
        p, t, r = scale
        with self.name_scope():
            self.first_residual_blocks = nn.HybridSequential()
            _add_block(self.first_residual_blocks,
                       ResidualBlock,
                       p,
                       channels,
                       norm_layer=norm_layer,
                       norm_kwargs=norm_kwargs)

            self.trunk_branches = nn.HybridSequential()
            _add_block(self.trunk_branches,
                       ResidualBlock,
                       t,
                       channels,
                       norm_layer=norm_layer,
                       norm_kwargs=norm_kwargs)

            self.mpool1 = nn.MaxPool2D(pool_size=3, strides=2, padding=1)

            self.softmax1_blocks = nn.HybridSequential()
            _add_block(self.softmax1_blocks,
                       ResidualBlock,
                       2 * r,
                       channels,
                       norm_layer=norm_layer,
                       norm_kwargs=norm_kwargs)

            self.interpolation1 = UpsamplingBilinear2d(size=size1)

            self.softmax2_blocks = nn.HybridSequential()
            _add_sigmoid_layer(self.softmax2_blocks, channels, norm_layer,
                               norm_kwargs)

            self.last_blocks = ResidualBlock(channels)
コード例 #11
0
ファイル: bninception.py プロジェクト: yangkang779/imgclsmob
 def __init__(self, in_channels, out_channels, bn_use_global_stats,
              avg_pool, **kwargs):
     super(InceptionPoolBranch, self).__init__(**kwargs)
     with self.name_scope():
         if avg_pool:
             self.pool = nn.AvgPool2D(pool_size=3,
                                      strides=1,
                                      padding=1,
                                      ceil_mode=True,
                                      count_include_pad=True)
         else:
             self.pool = nn.MaxPool2D(pool_size=3,
                                      strides=1,
                                      padding=1,
                                      ceil_mode=True)
         self.conv = conv1x1_block(in_channels=in_channels,
                                   out_channels=out_channels,
                                   use_bias=True,
                                   bn_use_global_stats=bn_use_global_stats)
コード例 #12
0
ファイル: xception.py プロジェクト: semchan/imgclsmob
    def __init__(self,
                 in_channels,
                 out_channels,
                 strides,
                 reps,
                 start_with_relu=True,
                 grow_first=True,
                 bn_use_global_stats=False,
                 **kwargs):
        super(XceptionUnit, self).__init__(**kwargs)
        self.resize_identity = (in_channels != out_channels) or (strides != 1)

        with self.name_scope():
            if self.resize_identity:
                self.identity_conv = conv1x1_block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    strides=strides,
                    bn_use_global_stats=bn_use_global_stats,
                    activate=False)

            self.body = nn.HybridSequential(prefix='')
            for i in range(reps):
                if (grow_first and (i == 0)) or ((not grow_first) and
                                                 (i == reps - 1)):
                    in_channels_i = in_channels
                    out_channels_i = out_channels
                else:
                    if grow_first:
                        in_channels_i = out_channels
                        out_channels_i = out_channels
                    else:
                        in_channels_i = in_channels
                        out_channels_i = in_channels
                activate = start_with_relu if (i == 0) else True
                self.body.add(
                    dws_conv3x3_block(in_channels=in_channels_i,
                                      out_channels=out_channels_i,
                                      bn_use_global_stats=bn_use_global_stats,
                                      activate=activate))
            if strides != 1:
                self.body.add(
                    nn.MaxPool2D(pool_size=3, strides=strides, padding=1))
コード例 #13
0
def _make_branch(use_pool, norm_layer, norm_kwargs, *conv_settings):
    out = nn.HybridSequential(prefix='')
    if use_pool == 'avg':
        out.add(nn.AvgPool2D(pool_size=3, strides=1, padding=1))
    elif use_pool == 'max':
        out.add(nn.MaxPool2D(pool_size=3, strides=1, padding=1))
    setting_names = ['in_channels', 'channels', 'kernel_size', 'strides', 'padding']
    for setting in conv_settings:
        kwargs = {}
        for i, value in enumerate(setting):
            if value is not None:
                if setting_names[i] == 'in_channels':
                    in_channels = value
                elif setting_names[i] == 'channels':
                    channels = value
                else:
                    kwargs[setting_names[i]] = value
        out.add(_make_basic_conv(in_channels, channels, channels, norm_layer, norm_kwargs, **kwargs))
    return out
コード例 #14
0
    def __init__(self,
                 layers,
                 batch_size,
                 width,
                 classes=1000,
                 last_gamma=False,
                 **kwargs):
        super(DBTNet, self).__init__(**kwargs)
        channels = 64
        self.gconvs = nn.HybridSequential(prefix='')
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')
            self.features1 = nn.HybridSequential(prefix='')
            self.features.add(nn.BatchNorm(scale=False, center=False))

            self.features.add(nn.Conv2D(channels, 7, 2, 3, use_bias=False))

            self.features.add(nn.BatchNorm())
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.MaxPool2D(3, 2, 1))

            for i, num_layer in enumerate(layers):
                stride = 1 if i == 0 else 2
                self.features.add(
                    self._make_layer(channels, num_layer, stride, last_gamma,
                                     False, i + 1, batch_size, width))
                channels *= 2
            gconv = GroupConv2(2048,
                               batch_size=batch_size,
                               kernel_size=1,
                               use_bias=False,
                               width=width // 32)
            self.gconvs.add(gconv)
            self.features.add(gconv)
            self.features.add(
                GB2HybridLayer(32, np.int(2048 / 32), width // 32, 'gb'))
            self.features1.add(nn.GlobalAvgPool2D())
            self.features1.add(nn.Flatten())

        self.myoutput = nn.HybridSequential(prefix='new')
        with self.myoutput.name_scope():
            self.myoutput.add(
                nn.Conv2D(classes, kernel_size=1, padding=0, use_bias=True))
コード例 #15
0
def GetNet():
    net = nn.HybridSequential()
    with net.name_scope():
        net.add(nn.Conv2D(channels=32, kernel_size=5, activation='relu'))
        net.add(nn.MaxPool2D(pool_size=2, strides=1))

        net.add(nn.Conv2D(channels=32, kernel_size=5, activation='relu'))
        net.add(nn.AvgPool2D(pool_size=2, strides=1))

        net.add(nn.Conv2D(channels=32, kernel_size=3, activation='relu'))
        net.add(nn.AvgPool2D(pool_size=2, strides=1))

        net.add(nn.Conv2D(channels=32, kernel_size=3, activation='relu'))
        net.add(nn.AvgPool2D(pool_size=2, strides=1))

        net.add(nn.Flatten())
        net.add(nn.Dense(256))
        net.add(Cont())
        return net
コード例 #16
0
ファイル: vgg.py プロジェクト: sunbc0120/gluon-ocr
 def _make_features(self, layers, filters, strides, batch_norm):
     featurizer = nn.HybridSequential(prefix='')
     for i, num in enumerate(layers):
         for _ in range(num):
             featurizer.add(
                 nn.Conv2D(filters[i],
                           kernel_size=3,
                           padding=1,
                           weight_initializer=Xavier(rnd_type='gaussian',
                                                     factor_type='out',
                                                     magnitude=2),
                           bias_initializer='zeros'))
             if batch_norm:
                 featurizer.add(
                     self.norm_layer(**({} if self.norm_kwargs is None else
                                        self.norm_kwargs)))
             featurizer.add(nn.Activation('relu'))
         featurizer.add(nn.MaxPool2D(strides=strides[i]))
     return featurizer
コード例 #17
0
 def __init__(self, c1, c2, c3, c4, **kwargs):
     super(Inception, self).__init__(**kwargs)
     # path1, 1x1 Conv
     self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
     # path2, 1x1 Conv & 3x3 Conv
     self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
     self.p2_2 = nn.Conv2D(c2[1],
                           kernel_size=3,
                           padding=1,
                           activation='relu')
     # path3, 1x1 Conv & 5x5 Conv
     self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
     self.p3_2 = nn.Conv2D(c3[1],
                           kernel_size=5,
                           padding=2,
                           activation='relu')
     # path4, 3x3 Max_pooling & 1x1 Conv
     self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
     self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
コード例 #18
0
ファイル: shufflenet.py プロジェクト: CosmosHua/imgclsmob
 def __init__(self,
              in_channels,
              out_channels,
              **kwargs):
     super(ShuffleInitBlock, self).__init__(**kwargs)
     with self.name_scope():
         self.conv = nn.Conv2D(
             channels=out_channels,
             kernel_size=3,
             strides=2,
             padding=1,
             use_bias=False,
             in_channels=in_channels)
         self.bn = nn.BatchNorm(in_channels=out_channels)
         self.activ = nn.Activation('relu')
         self.pool = nn.MaxPool2D(
             pool_size=3,
             strides=2,
             padding=1)
コード例 #19
0
ファイル: GoogLeNet.py プロジェクト: LongClawZcw/mxnet_models
 def __init__(self, c1, c2, c3, c4, **kwargs):
     super(Inception, self).__init__(**kwargs)
     # 线路 1,单 1 x 1 卷积层。
     self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
     # 线路 2,1 x 1 卷积层后接 3 x 3 卷积层。
     self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
     self.p2_2 = nn.Conv2D(c2[1],
                           kernel_size=3,
                           padding=1,
                           activation='relu')
     # 线路 3,1 x 1 卷积层后接 5 x 5 卷积层。
     self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
     self.p3_2 = nn.Conv2D(c3[1],
                           kernel_size=5,
                           padding=2,
                           activation='relu')
     # 线路 4,3 x 3 最⼤池化层后接 1 x 1 卷积层。
     self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
     self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')
コード例 #20
0
ファイル: base_net.py プロジェクト: anhle-uet/2d_attention
    def __init__(self,
                 init_channels,
                 growth_rate,
                 num_layers_list,
                 strides_list,
                 bn_size=4,
                 dropout=0,
                 num_classes=1000,
                 use_backbone=True,
                 **kwargs):
        super(DenseNet, self).__init__(**kwargs)

        with self.name_scope():
            self.first_layer = nn.HybridSequential()
            self.features = nn.HybridSequential()
            self.first_layer.add(
                nn.Conv2D(init_channels,
                          kernel_size=7,
                          strides=2,
                          padding=3,
                          use_bias=False))
            self.first_layer.add(nn.BatchNorm())
            self.first_layer.add(nn.Activation('relu'))
            self.first_pool = nn.MaxPool2D((2, 2), (2, 2))

            num_channels = init_channels
            for i, num_layers in enumerate(num_layers_list):
                self.features.add(
                    DenseBlock(num_layers, bn_size, growth_rate, dropout))
                num_channels = num_channels + num_layers * growth_rate
                if i != len(num_layers_list) - 1:
                    num_channels = num_channels // 2
                    self.features.add(Transition(num_channels,
                                                 strides_list[i]))
            if not use_backbone:
                self.output = nn.HybridSequential()
                self.output.add(nn.BatchNorm())
                self.output.add(nn.Activation('relu'))
                self.output.add(nn.GlobalAvgPool2D())
                self.output.add(nn.Dense(num_classes))
            else:
                self.output = None
    def __init__(self,
                 backbone,
                 heads,
                 head_conv_channel=0,
                 scale=4.0,
                 topk=100,
                 in_channels=3,
                 in_size=(512, 512),
                 **kwargs):
        super(CenterNet, self).__init__(**kwargs)
        self.in_size = in_size
        self.in_channels = in_channels

        with self.name_scope():
            self.backbone = backbone

            self.heatmap_nms = nn.MaxPool2D(
                pool_size=3,
                strides=1,
                padding=1)
            self.decoder = CenterNetDecoder(
                topk=topk,
                scale=scale)
            self.heads = nn.HybridSequential(prefix="heads")
            for name, values in heads.items():
                head = nn.HybridSequential(name)
                num_output = values['num_output']
                if head_conv_channel > 0:
                    head.add(nn.Conv2D(
                        head_conv_channel,
                        kernel_size=3,
                        padding=1,
                        use_bias=True))
                    head.add(nn.Activation('relu'))
                head.add(nn.Conv2D(
                    num_output,
                    kernel_size=1,
                    strides=1,
                    padding=0,
                    use_bias=True))

                self.heads.add(head)
コード例 #22
0
ファイル: densenet.py プロジェクト: p517332051/mygluon_cv
    def __init__(self,
                 num_init_features,
                 growth_rate,
                 block_config,
                 bn_size=4,
                 dropout=0,
                 classes=1000,
                 norm_layer=BatchNorm,
                 norm_kwargs=None,
                 **kwargs):
        super(DenseNet, self).__init__(**kwargs)
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')
            self.features.add(
                nn.Conv2D(num_init_features,
                          kernel_size=7,
                          strides=2,
                          padding=3,
                          use_bias=False))
            self.features.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1))
            # Add dense blocks
            num_features = num_init_features
            for i, num_layers in enumerate(block_config):
                self.features.add(
                    _make_dense_block(num_layers, bn_size, growth_rate,
                                      dropout, i + 1, norm_layer, norm_kwargs))
                num_features = num_features + num_layers * growth_rate
                if i != len(block_config) - 1:
                    self.features.add(
                        _make_transition(num_features // 2, norm_layer,
                                         norm_kwargs))
                    num_features = num_features // 2
            self.features.add(
                norm_layer(**({} if norm_kwargs is None else norm_kwargs)))
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.AvgPool2D(pool_size=7))
            self.features.add(nn.Flatten())

            self.output = nn.Dense(classes)
コード例 #23
0
ファイル: BASE.py プロジェクト: wsf1297139301/pfld-lite
 def __init__(self, num_of_pts=98, **kwargs):
     super(BASE, self).__init__(**kwargs)
     self.pts_num = num_of_pts
     self.lmks_net = mx.gluon.nn.HybridSequential()
     self.lmks_net.add(
         nn.Conv2D(channels=16,
                   kernel_size=(3, 3),
                   strides=(2, 2),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=32,
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=32,
                   kernel_size=(3, 3),
                   strides=(2, 2),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=32,
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=32,
                   kernel_size=(3, 3),
                   strides=(2, 2),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=64,
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=64,
                   kernel_size=(3, 3),
                   strides=(2, 2),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.Conv2D(channels=128,
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(1, 1)), nn.BatchNorm(), nn.Activation('relu'),
         nn.MaxPool2D(pool_size=(2, 2), strides=(2, 2)),
         nn.Conv2D(channels=num_of_pts * 2,
                   kernel_size=(3, 3),
                   strides=(1, 1),
                   padding=(0, 0)))
コード例 #24
0
    def __init__(self,
                 block,
                 layers,
                 channels,
                 classes=1000,
                 thumbnail=False,
                 last_gamma=False,
                 use_se=False,
                 **kwargs):
        super(ResNetV2, self).__init__(**kwargs)
        assert len(layers) == len(channels) - 1
        with self.name_scope():
            self.features = nn.HybridSequential(prefix='')
            self.features.add(nn.BatchNorm(scale=False, center=False))
            if thumbnail:
                self.features.add(_conv3x3(channels[0], 1, 0))
            else:
                self.features.add(
                    nn.Conv2D(channels[0], 7, 2, 3, use_bias=False))
                self.features.add(nn.BatchNorm())
                self.features.add(nn.Activation('relu'))
                self.features.add(nn.MaxPool2D(3, 2, 1))

            in_channels = channels[0]
            for i, num_layer in enumerate(layers):
                stride = 1 if i == 0 else 2
                self.features.add(
                    self._make_layer(block,
                                     num_layer,
                                     channels[i + 1],
                                     stride,
                                     i + 1,
                                     in_channels=in_channels,
                                     last_gamma=last_gamma,
                                     use_se=use_se))
                in_channels = channels[i + 1]
            self.features.add(nn.BatchNorm())
            self.features.add(nn.Activation('relu'))
            self.features.add(nn.GlobalAvgPool2D())
            self.features.add(nn.Flatten())

            self.output = nn.Dense(classes, in_units=in_channels)
コード例 #25
0
    def __init__(self, **kwargs):
        super(ResidualAttentionModel_92, self).__init__(**kwargs)
        """
        input size 224
        """
        with self.name_scope():
            self.conv1 = nn.HybridSequential()
            with self.conv1.name_scope():
                self.conv1.add(
                    nn.Conv2D(64,
                              kernel_size=7,
                              strides=2,
                              padding=3,
                              use_bias=False))
                self.conv1.add(nn.BatchNorm())
                self.conv1.add(nn.Activation('relu'))
            self.mpool1 = nn.MaxPool2D(pool_size=3, strides=2, padding=1)

            self.residual_block1 = ResidualBlock(256, in_channels=64)
            self.attention_module1 = AttentionModule_stage1(256)
            self.residual_block2 = ResidualBlock(512,
                                                 in_channels=256,
                                                 stride=2)
            self.attention_module2 = AttentionModule_stage2(512)
            self.attention_module2_2 = AttentionModule_stage2(512)
            self.residual_block3 = ResidualBlock(1024,
                                                 in_channels=512,
                                                 stride=2)
            self.attention_module3 = AttentionModule_stage3(1024)
            self.attention_module3_2 = AttentionModule_stage3(1024)
            self.attention_module3_3 = AttentionModule_stage3(1024)
            self.residual_block4 = ResidualBlock(2048,
                                                 in_channels=1024,
                                                 stride=2)
            self.residual_block5 = ResidualBlock(2048)
            self.residual_block6 = ResidualBlock(2048)
            self.mpool2 = nn.HybridSequential()
            with self.mpool2.name_scope():
                self.mpool2.add(nn.BatchNorm())
                self.mpool2.add(nn.Activation('relu'))
                self.mpool2.add(nn.AvgPool2D(pool_size=7, strides=1))
            self.fc = nn.Conv2D(10, kernel_size=1)
コード例 #26
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 bn_use_global_stats=False,
                 **kwargs):
        super(SEInitBlock, self).__init__(**kwargs)
        mid_channels = out_channels // 2

        with self.name_scope():
            self.conv1 = conv3x3_block(in_channels=in_channels,
                                       out_channels=mid_channels,
                                       strides=2,
                                       bn_use_global_stats=bn_use_global_stats)
            self.conv2 = conv3x3_block(in_channels=mid_channels,
                                       out_channels=mid_channels,
                                       bn_use_global_stats=bn_use_global_stats)
            self.conv3 = conv3x3_block(in_channels=mid_channels,
                                       out_channels=out_channels,
                                       bn_use_global_stats=bn_use_global_stats)
            self.pool = nn.MaxPool2D(pool_size=3, strides=2, padding=1)
コード例 #27
0
    def __init__(self, **kwargs):
        super(Network, self).__init__(**kwargs)
        with self.name_scope():
            self.conv = nn.Conv2D(230, kernel_size=[3, DIMENSION], padding=[2, 0], strides=1)
            self.pmp = nn.MaxPool2D(pool_size=[FIXED_WORD_LENGTH, 1])
            self.conv_out = nn.Sequential()
            self.conv_out.add(nn.Flatten())
            self.conv_out.add(nn.Activation(activation='relu'))

            self.center_att = nn.Sequential()
            self.center_att.add(nn.Dense(1, in_units=200, flatten=False,
                                         activation="sigmoid"))
            self.center_out = nn.Sequential()
            # self.center_out.add(nn.Dense(200, activation="relu"))
            self.center_out.add(nn.Activation(activation='relu'))

            self.output = nn.Sequential()
            self.output.add(nn.Dropout(0.5))
            self.output.add(nn.Dense(128, activation="sigmoid"))
            self.output.add(nn.Dense(7, activation='tanh'))
コード例 #28
0
 def _make_features(self, layers, filters, batch_norm):
     featurizer = nn.HybridSequential(prefix='')
     first = True
     for i, num in enumerate(layers):
         for _ in range(num):
             conv_block = nn.Conv2D if first else nn.QConv2D
             first = False
             featurizer.add(
                 conv_block(filters[i],
                            kernel_size=3,
                            padding=1,
                            weight_initializer=Xavier(rnd_type='gaussian',
                                                      factor_type='out',
                                                      magnitude=2),
                            bias_initializer='zeros'))
             if batch_norm:
                 featurizer.add(nn.BatchNorm())
             featurizer.add(nn.Activation('relu'))
         featurizer.add(nn.MaxPool2D(strides=2))
     return featurizer
コード例 #29
0
ファイル: utils.py プロジェクト: XxChang/gluon-tutorials-zh
def resnet18(num_classes):
    """The ResNet-18 model."""
    net = nn.Sequential()
    net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1), nn.BatchNorm(),
            nn.Activation('relu'),
            nn.MaxPool2D(pool_size=3, strides=2, padding=1))

    def resnet_block(num_channels, num_residuals, first_block=False):
        blk = nn.Sequential()
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
            else:
                blk.add(Residual(num_channels))
        return blk

    net.add(resnet_block(64, 2, first_block=True), resnet_block(128, 2),
            resnet_block(256, 2), resnet_block(512, 2))
    net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
    return net
コード例 #30
0
 def _make_features(self, layers, filters, batch_norm):
     featurizer = nn.HybridSequential(prefix='')
     for i, num in enumerate(layers):
         for _ in range(num):
             featurizer.add(
                 nn.Conv2D(
                     filters[i],
                     kernel_size=3,
                     padding=1,
                     weight_initializer=Xavier(rnd_type='gaussian',
                                               factor_type='out',
                                               magnitude=2),
                     bias_initializer='zeros',
                     #name = 'conv%s_%s'%(str(i+1),str(_+1))\
                 ))
             if batch_norm:
                 featurizer.add(nn.BatchNorm())
             featurizer.add(nn.Activation('relu'))
         featurizer.add(nn.MaxPool2D(strides=2))
     return featurizer