コード例 #1
0
    def forward(self, is_train, req, in_data, out_data, aux):
        global batch
        batch += 1
        x = in_data[0]
        gamma = in_data[1]
        beta = in_data[2]
        moving_mean = in_data[3]
        moving_var = in_data[4]
        new_gamma = in_data[5]
        new_beta = in_data[6]
        y_shift_bit = in_data[7]
        last_shift_bit = in_data[8]
        #print(batch)
        if batch % 20 == 0:
            writer.add_histogram(tag='batch1_input',
                                 values=x,
                                 bins=np.arange(-10, 10),
                                 global_step=batch)
        #if x.max() > 127 or x.min() < -128:
        #    print(x)
        y = out_data[0]
        if is_train:
            mean = nd.mean(x, axis=(0, 2, 3))
            var = nd.array(np.var(x.asnumpy(), axis=(0, 2, 3)))

            quan_gamma = gamma / (nd.sqrt(var + self.eps))
            quan_beta = beta - mean * gamma / nd.sqrt(var + self.eps)
            # print(quan_gamma)
            quan_gamma = quan_gamma * (2**last_shift_bit)
            quan_gamma, quan_beta, gamma_shift_bit = self.int_quantize_double(
                quan_gamma, quan_beta)

            y = nd.BatchNorm(x,
                             gamma=nd.ones(shape=moving_var.shape),
                             beta=nd.zeros(shape=moving_mean.shape),
                             moving_mean=nd.zeros(shape=moving_mean.shape),
                             moving_var=nd.ones(shape=moving_var.shape),
                             eps=1e-5,
                             momentum=self.momentum,
                             fix_gamma=True,
                             name=self.name)
            y, y_shift_bit = self.int_quantize(y)
            # print('train gamma', quan_gamma)
        else:
            # quan_gamma, quan_beta, gamma_shift_bit = self.int_quantize_double(quan_gamma, quan_beta)
            y = nd.BatchNorm(x,
                             gamma=nd.ones(shape=moving_var.shape),
                             beta=new_beta,
                             moving_mean=nd.zeros(shape=moving_mean.shape),
                             moving_var=nd.ones(shape=moving_var.shape),
                             eps=1e-5,
                             momentum=self.momentum,
                             fix_gamma=True,
                             name=self.name)
            # y, y_shift_bit = self.int_quantize(y)
            y = y * (2**y_shift_bit)
        self.assign(out_data[0], req[0], mx.nd.array(y))
コード例 #2
0
    def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
        dx = in_grad[0]
        dgamma = in_grad[1]
        dbeta = in_grad[2]

        x = in_data[0]
        gamma = in_data[1]
        beta = in_data[2]
        mean = in_data[3]
        var = in_data[4]
        new_gamma = in_data[5]
        new_beta = in_data[6]
        y_shift_bit = in_data[7]
        last_shift_bit = in_data[8]

        y = out_data[0]
        dy = out_grad[0]

        mean = nd.mean(x, axis=(0, 2, 3))
        var = nd.array(np.var(x.asnumpy(), axis=(0, 2, 3)))

        quan_gamma = gamma / (nd.sqrt(var + self.eps))
        quan_beta = beta - mean * gamma / nd.sqrt(var + self.eps)

        # quan_gamma = nd.clip(nd.floor(nd.log2(quan_gamma)), a_min=-3, a_max=0)
        # quan_gamma = 2**(quan_gamma)
        quan_gamma = quan_gamma * (2**last_shift_bit)
        # quan_beta, beta_shift_bit = self.int_quantize(quan_beta)
        quan_gamma, quan_beta, gamma_shift_bit = self.int_quantize_double(
            quan_gamma, quan_beta)
        x.attach_grad(), quan_gamma.attach_grad(), quan_beta.attach_grad()
        # print(quan_gamma)

        with autograd.record():
            y = nd.BatchNorm(x,
                             gamma=quan_gamma,
                             beta=quan_beta,
                             moving_mean=nd.zeros(shape=mean.shape),
                             moving_var=nd.ones(shape=var.shape),
                             eps=self.eps,
                             momentum=self.momentum,
                             fix_gamma=False,
                             name=self.name)
            y, y_shift_bit = self.int_quantize(y)
        # print(quan_gamma)

        dx, dgamma, dbeta = autograd.grad(y, [x, quan_gamma, quan_beta],
                                          dy,
                                          retain_graph=True)

        self.assign(in_grad[0], req[0], dx / 2**y_shift_bit)
        self.assign(in_grad[1], req[0],
                    dgamma / 2**(gamma_shift_bit + last_shift_bit))
        self.assign(in_grad[2], req[0], dbeta / 2**gamma_shift_bit)

        self.assign(in_data[5], req[0], quan_gamma)
        self.assign(in_data[6], req[0], quan_beta)
        self.assign(in_data[7], req[0], y_shift_bit)
コード例 #3
0
 def forward(self, x):
     # return fn.BatchNormFn(self.running_mean.data(x.context),
     #                       self.running_var.data(x.context),
     #                       self.momentum, self.eps)(x, self.bn_weight.data(x.context),
     #                                                self.bn_bias.data(x.context))
     if autograd.is_training():
         return nd.BatchNorm(x,
                             gamma=self.bn_weight.data(x.context),
                             beta=self.bn_bias.data(x.context),
                             moving_mean=self.running_mean.data(x.context),
                             moving_var=self.running_var.data(x.context),
                             eps=self.eps,
                             momentum=self.momentum,
                             use_global_stats=False)
     else:
         return nd.BatchNorm(x,
                             gamma=self.bn_weight.data(x.context),
                             beta=self.bn_bias.data(x.context),
                             moving_mean=self.running_mean.data(x.context),
                             moving_var=self.running_var.data(x.context),
                             eps=self.eps,
                             momentum=self.momentum,
                             use_global_stats=True)
コード例 #4
0
ファイル: base.py プロジェクト: chr5tphr/ecGAN
    def merge_batchnorm(self, bnorm, ctx=None):
        if not isinstance(bnorm, nn.BatchNorm):
            raise RuntimeError('Cannot merge_batchnorm with type %s.' %
                               type(bnorm))

        kwargs = bnorm._kwargs.copy()
        del kwargs['axis']

        gamma = bnorm.gamma.data(ctx=ctx)
        beta = bnorm.beta.data(ctx=ctx)
        moving_mean = bnorm.running_mean.data(ctx=ctx)
        moving_var = bnorm.running_var.data(ctx=ctx)

        wmod = nd.BatchNorm(data=self.weight.data(ctx=ctx),
                            gamma=gamma,
                            beta=beta.zeros_like(),
                            moving_mean=moving_mean.zeros_like(),
                            moving_var=moving_var,
                            axis=self._weight_axis,
                            **kwargs)
        self.weight.set_data(wmod)

        if self.bias is not None:
            bmod = nd.BatchNorm(data=self.bias.data(ctx=ctx),
                                gamma=gamma,
                                beta=beta,
                                moving_mean=moving_mean,
                                moving_var=moving_var,
                                axis=self._bias_axis,
                                **kwargs)
            self.bias.set_data(bmod)
        else:
            raise NotImplementedError(
                'Adding bias to previously bias-less linear layers during BatchNorm-merging is not yet supported.'
            )

        return True
コード例 #5
0
    def forward(self, is_train, req, in_data, out_data, aux):
        x = in_data[0]
        gamma = in_data[1]
        beta = in_data[2]
        moving_mean = in_data[3]
        moving_var = in_data[4]
        # print(x.sum())
        y = out_data[0]

        if is_train:
            mean = nd.mean(x, axis=(0, 2, 3))
            var = nd.array(np.var(x.asnumpy(), axis=(0, 2, 3)))
            #print(moving_mean ,self.momentum, mean)
            moving_mean = moving_mean * self.momentum + mean * (1 -
                                                                self.momentum)
            moving_var = moving_var * self.momentum + var * (1 - self.momentum)
            self.assign(in_data[3], req[0], moving_mean)
            self.assign(in_data[4], req[0], moving_var)

        else:
            mean = moving_mean
            var = moving_var

        quan_gamma = self.quantize(gamma / (nd.sqrt(var + self.eps)))
        quan_beta = self.quantize(beta -
                                  mean * gamma / nd.sqrt(var + self.eps))

        y = nd.BatchNorm(x,
                         gamma=quan_gamma,
                         beta=quan_beta,
                         moving_mean=nd.zeros(shape=moving_mean.shape),
                         moving_var=nd.ones(shape=moving_var.shape),
                         eps=self.eps,
                         momentum=self.momentum,
                         fix_gamma=self.fix_gamma,
                         name=self.name)

        self.assign(out_data[0], req[0], mx.nd.array(y))
コード例 #6
0
    def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
        dx = in_grad[0]
        dgamma = in_grad[1]
        dbeta = in_grad[2]

        x = in_data[0]
        gamma = in_data[1]
        beta = in_data[2]

        y = out_data[0]
        dy = out_grad[0]

        mean = nd.mean(x, axis=(0, 2, 3))
        var = nd.array(np.var(x.asnumpy(), axis=(0, 2, 3)))

        quan_gamma = gamma
        quan_beta = beta

        x.attach_grad(), gamma.attach_grad(), beta.attach_grad()
        with autograd.record():
            y = nd.BatchNorm(x,
                             gamma=quan_gamma,
                             beta=quan_beta,
                             moving_mean=mean,
                             moving_var=var,
                             eps=self.eps,
                             momentum=self.momentum,
                             fix_gamma=self.fix_gamma,
                             name=self.name)

        dx, dgamma, dbeta = autograd.grad(y, [x, quan_gamma, quan_beta],
                                          dy,
                                          retain_graph=True)
        self.assign(in_grad[0], req[0], dx)
        self.assign(in_grad[1], req[0], dgamma)
        self.assign(in_grad[2], req[0], dbeta)