コード例 #1
0
    def special_im2col(self, temp_img):  # , idx_out
        N, C, height, width = temp_img.shape
        offset_h, offset_w = self.kernel_hw
        shape_oh, shape_ow = offset_h.shape, offset_w.shape
        offset_h = offset_h.broadcast_to((C,) + shape_oh).asnumpy().astype('int')
        offset_w = offset_w.broadcast_to((C,) + shape_ow).asnumpy().astype('int')
        shedule = np.tile(np.arange(self.kernel_size[1] ** 2), (C, 1))

        assert isinstance(self.padding, int), 'padding should be a number'
        pad = (0,) * 4 + (self.padding,) * 4
        stride_h, stride_w = map(int, self.strides)
        height -= height % stride_h
        width -= width % stride_w
        data = nd.pad(temp_img, mode="constant", pad_width=pad)
        data = data.transpose((1, 2, 3, 0))

        array_channel = []
        for n in range(C):
            array_kernel = []
            for i in shedule[n]:
                start_h, start_w = offset_h[n, i], offset_w[n, i]
                end_h, end_w = start_h + height, start_w + width
                array_kernel.append(data[n, start_h:end_h:stride_h, start_w:end_w:stride_w, :])
            array_channel.append(nd.stack(*array_kernel))

        sz = array_channel[0].shape
        pit = nd.stack(*array_channel).reshape((-1,) + sz[1:])

        return pit
コード例 #2
0
ファイル: common_func.py プロジェクト: zczjx/es_net
def im2col(indut_data, filter_h, filter_w, stride=1, pad=0):
    """

    Parameters
    ----------
    indut_data : 由(数据量, 通道, 高, 长)的4维数组构成的输入数据
    filter_h : 滤波器的高
    filter_w : 滤波器的长
    stride : 步幅
    pad : 填充

    Returns
    -------
    col : 2维数组
    """
    N, C, H, W = indut_data.shape
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1

    img = nd.pad(indut_data, mode='constant',
                pad_width=(0, 0, 0, 0, pad, pad, pad, pad))
    img_np = img.asnumpy()
    col_np = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            col_np[:, :, y, x, :, :] = img_np[:, :, y:y_max:stride, x:x_max:stride]

    col = nd.array(col_np, ctx=ctx)
    col = col.transpose(axes=(0, 4, 5, 1, 2, 3)).reshape(N*out_h*out_w, -1)
    
    return col
コード例 #3
0
    def decode(self, targets, encoder_outputs, attention_bias):
        """Generate logits for each value in the target sequence.

            Args:
              targets: target values for the output sequence.
                int tensor with shape [batch_size, target_length]
              encoder_outputs: continuous representation of input sequence.
                float tensor with shape [batch_size, input_length, hidden_size]
              attention_bias: float tensor with shape [batch_size, 1, 1, input_length]

            Returns:
              float32 tensor with shape [batch_size, target_length, vocab_size]
        """
        decoder_inputs = self.embedding_softmax_layer(targets)
        decoder_inputs = nd.expand_dims(decoder_inputs, axis=0)
        decoder_inputs = nd.pad(data=decoder_inputs,
                                mode="constant",
                                constant_value=0,
                                pad_width=(0, 0, 0, 0, 1, 0, 0, 0))
        decoder_inputs = nd.reshape(data=decoder_inputs,
                                    shape=decoder_inputs.shape[1:])[:, :-1, :]

        length = decoder_inputs.shape[1]
        decoder_inputs = decoder_inputs + model_utils.get_position_encoding(
            length, self.param.hidden_size, targets.context)
        if self.train:
            decoder_inputs = self.dropout_output(decoder_inputs)

        decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
            length, targets.context)
        outputs = self.decoder_stack(decoder_inputs, encoder_outputs,
                                     decoder_self_attention_bias,
                                     attention_bias)
        logits = self.embedding_softmax_layer.linear(outputs)
        return logits
コード例 #4
0
 def validate_batch(self, img1, img2, flow):
     shape = img1.shape
     pad_h = (64 - shape[2] % 64) % 64
     pad_w = (64 - shape[3] % 64) % 64
     if pad_h != 0 or pad_w != 0:
         img1 = nd.pad(img1,
                       mode='constant',
                       constant_value=0,
                       pad_width=(0, 0, 0, 0, 0, pad_h, 0, pad_w))
         img2 = nd.pad(img2,
                       mode='constant',
                       constant_value=0,
                       pad_width=(0, 0, 0, 0, 0, pad_h, 0, pad_w))
     pred = self.network(self.preprocess(img1), self.preprocess(img2))
     epe = self.metrics(pred, flow)
     return epe.asnumpy()
コード例 #5
0
ファイル: stft.py プロジェクト: Wallart/gluon-tacotron2
    def transform(self, input_data):
        num_batches = input_data.shape[0]
        num_samples = input_data.shape[1]

        self.num_samples = num_samples

        # similar to librosa, reflect-pad the input
        input_data = input_data.reshape(num_batches, 1,
                                        num_samples).expand_dims(1)
        input_data = nd.pad(input_data, 'reflect',
                            (0, 0, 0, 0, 0, 0, self.filter_length // 2,
                             self.filter_length // 2))
        input_data = input_data.squeeze(axis=1)

        forward_transform = nd.Convolution(
            input_data,
            self.forward_basis,
            no_bias=True,
            kernel=self.forward_basis.shape[2],
            num_filter=self.forward_basis.shape[0],
            stride=self.hop_length,
            pad=0)

        cutoff = int((self.filter_length / 2) + 1)
        real_part = forward_transform[:, :cutoff, :]
        imag_part = forward_transform[:, cutoff:, :]

        magnitude = nd.sqrt(real_part**2 + imag_part**2)
        phase = nd.array(np.arctan2(imag_part.asnumpy(), real_part.asnumpy()))
        #phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))

        return magnitude, phase
コード例 #6
0
def test_pad():
    x = create_2d_tensor(rows=SMALL_Y-2, columns=LARGE_X//2-2, dtype=np.float32).reshape(1 , 1, SMALL_Y-2, LARGE_X//2-2)
    y = nd.pad(x, mode="edge", pad_width=(0, 0, 0, 0, 1, 1, 1, 1))
    assert y[0][0][1][0] == 0
    assert y[0][0][1][-1] == 0
    assert y[0][0][-1][0] == SMALL_Y-3
    assert y[0][0][-1][-1] == SMALL_Y-3
    assert y.shape == (1, 1, SMALL_Y, LARGE_X//2)
コード例 #7
0
 def predict_batch_mx(self, img1, img2, flow):
     ''' Predict a batch of samples range [0,1] with network preprocessing and padding
     '''
     shape = img1.shape
     pad_h = (64 - shape[2] % 64) % 64
     pad_w = (64 - shape[3] % 64) % 64
     if pad_h != 0 or pad_w != 0:
         img1 = nd.pad(img1,
                       mode='constant',
                       constant_value=0,
                       pad_width=(0, 0, 0, 0, 0, pad_h, 0, pad_w))
         img2 = nd.pad(img2,
                       mode='constant',
                       constant_value=0,
                       pad_width=(0, 0, 0, 0, 0, pad_h, 0, pad_w))
     rgb_mean = self.rgb_mean.as_in_context(img1.context)
     pred = self.network(img1 - rgb_mean, img2 - rgb_mean)
     return pred
コード例 #8
0
ファイル: layers.py プロジェクト: florianmahner/Glow-MXNet
    def forward(self, x_in):
        # Pad along height and width and learn the identity function
        x_out = nd.pad(x_in,
                       mode='constant',
                       pad_width=(0, 0, 0, 0, 1, 1, 1, 1),
                       constant_value=1)
        x_out = self.conv(x_out)
        # Not in paper, but in the glow code
        x_out = x_out * nd.exp(
            self.log_s.data(x_in.context) * self.log_scale_factor)

        return x_out
コード例 #9
0
ファイル: func.py プロジェクト: chr5tphr/ecGAN
def im2col_indices(x, field_height, field_width, padding, stride):
    """ An implementation of im2col based on some fancy indexing """
    # Zero-pad the input
    ctx = x.context
    p = padding
    x_padded = nd.pad(x, pad_width=(0, 0, 0, 0, p, p, p, p), mode='constant')

    k, i, j = get_im2col_indices(x.shape, field_height, field_width, padding, stride, ctx=ctx)

    cols = x_padded[:, k, i, j]
    C = x.shape[1]
    cols = cols.transpose((1, 2, 0)).reshape((field_height * field_width * C, -1))
    return cols
コード例 #10
0
def augment(data, auglist):
    data = nd.pad(data,
                  pad_width=(0, 0, 0, 0, 2, 2, 2, 2),
                  mode='constant',
                  constant_value=0)
    data = nd.transpose(data, (0, 2, 3, 1))
    temp = []
    for d in data:
        for aug in auglist:
            d = aug(d)
        temp.append(d)
    data = nd.stack(*temp)
    data = nd.transpose(data, (0, 3, 1, 2))
    return data
コード例 #11
0
def _pad_tensors_to_same_length(x, y):
    """Pad x and y so that the result have the same length (second dimension)"""
    x_length = x.shape[1]
    y_length = y.shape[1]

    max_length = max(x_length, y_length)
    x = nd.expand_dims(x, axis=0)
    x = nd.pad(x,
               mode="constant",
               constant_value=0,
               pad_width=(0, 0, 0, 0, 0, max_length - x_length, 0, 0))
    x = nd.squeeze(x, axis=0)

    y = nd.expand_dims(y, axis=0)
    y = nd.expand_dims(y, axis=0)
    y = nd.pad(y,
               mode="constant",
               constant_value=0,
               pad_width=(0, 0, 0, 0, 0, 0, 0, max_length - y_length))
    y = nd.squeeze(y, axis=0)
    y = nd.squeeze(y, axis=0)

    return x, y
コード例 #12
0
def augment(data):
    aug_list = image.CreateAugmenter(data_shape=(3, 32, 32),
                                     rand_crop=True,
                                     rand_mirror=True)
    data = nd.pad(data,
                  pad_width=(0, 0, 0, 0, 2, 2, 2, 2),
                  mode='constant',
                  constant_value=0)
    data = nd.transpose(data, (0, 2, 3, 1))
    temp = []
    for d in data:
        for aug in aug_list:
            d = aug(d)
        temp.append(d)
    data = nd.stack(*temp)
    data = nd.transpose(data, (0, 3, 1, 2))
    return data
コード例 #13
0
ファイル: model.py プロジェクト: zhougekaibenchi/MXNet-Unet
    def hybrid_forward(self, F, x1, *args, **kwargs):
        x2 = args[0]
        x1 = self.up(x1)

        # The same as paper
        # x2 = x2[:, :, :x1.shape[2], : x1.shape[3]]

        # Fill in x1 shape to be the same as the x2
        diffY = x2.shape[2] - x1.shape[2]
        diffX = x2.shape[3] - x1.shape[3]
        x1 = nd.pad(x1,
                    mode='constant',
                    constant_value=0,
                    pad_width=(0, 0, 0, 0, diffY // 2, diffY - diffY // 2,
                               diffX // 2, diffX - diffX // 2))
        x = nd.concat(x1, x2, dim=1)
        logging.info(x.shape)
        return self.conv(x)
コード例 #14
0
ファイル: func.py プロジェクト: chr5tphr/ecGAN
def im2col_indices(x, field_height, field_width, padding, stride):
    """ An implementation of im2col based on some fancy indexing """
    # Zero-pad the input
    ctx = x.context
    p = padding
    x_padded = nd.pad(x, pad_width=(0, 0, 0, 0, p, p, p, p), mode='constant')

    k, i, j = get_im2col_indices(x.shape,
                                 field_height,
                                 field_width,
                                 padding,
                                 stride,
                                 ctx=ctx)

    cols = x_padded[:, k, i, j]
    C = x.shape[1]
    cols = cols.transpose((1, 2, 0)).reshape(
        (field_height * field_width * C, -1))
    return cols
コード例 #15
0
ファイル: data.py プロジェクト: chr5tphr/ecGAN
 def transform(data, label):
     data = ((data.astype('float32')/255.) * (bbox[1]-bbox[0]) + bbox[0]).reshape((1, 28, 28))
     if pad:
         data = nd.pad(data.reshape(1,1,28,28), 'constant', constant_value=bbox[0], pad_width=[0,0,0,0, 2,2,2,2])[0]
     label = label.astype('int32')
     return (data, label)
コード例 #16
0
from mxnet import nd


def view_single(data, id):
    if data.shape[1] == 3:
        img = data[id].transpose((1, 2, 0)).asnumpy()
    else:
        img = data[id].asnumpy()
    plt.imshow(img)
    plt.show()
    return img


def imshow(x):
    if x.shape[0] == 3:
        x = x.transpose((1, 2, 0))
    if isinstance(x, mx.ndarray.ndarray.NDArray):
        x = x.asnumpy()
    if x.dtype == np.float32:
        x = np.uint8(x)
    try:
        plt.imshow(x)
    except:
        print(x.shape)
    plt.show()


if __name__ == "__main__":
    X_padded = nd.pad(X.transpose((0, 3, 1, 2)).astype(np.float32),
                      mode='constant',
                      pad_width=(0, 0, 0, 0, 4, 4, 4, 4))