コード例 #1
0
    def data_prepare(self):
        # 语言数据
        self.__ld = LoadData(zip_file_name="jaychou_lyrics.zip",
                             txt_file_name="jaychou_lyrics.txt")
        self.__ld.set_data()
        self.__char_to_idx, self.__idx_to_char = self.__ld.set_get_dict()
        self.__vocab_size = len(self.__char_to_idx)
        self.__corpus_indices = self.__ld.set_get_index()

        # 神经网络参数
        input_dim = self.__vocab_size
        hidden_dim = self.__hidden_dim
        output_dim = self.__vocab_size
        std = .001
        # 隐含层
        self.__W_xh = nd.random_normal(scale=std,
                                       shape=(input_dim, hidden_dim),
                                       ctx=self.__ctx)
        self.__W_hh = nd.random_normal(scale=std,
                                       shape=(hidden_dim, hidden_dim),
                                       ctx=self.__ctx)
        self.__b_h = nd.zeros(hidden_dim, ctx=self.__ctx)
        # 输出层
        self.__W_hy = nd.random_normal(scale=std,
                                       shape=(hidden_dim, output_dim),
                                       ctx=self.__ctx)
        self.__b_y = nd.zeros(output_dim, ctx=self.__ctx)

        self.__params = [
            self.__W_xh, self.__W_hh, self.__b_h, self.__W_hy, self.__b_y
        ]
コード例 #2
0
 def __init__(self,
              num_sample,
              num_local,
              rank,
              local_rank,
              name,
              embedding_size,
              prefix,
              gpu=True):
     self.num_sample = num_sample
     self.num_local = num_local
     self.rank = rank
     self.name = name
     self.embedding_size = embedding_size
     self.gpu = gpu
     self.prefix = prefix
     if gpu:
         self.weight = nd.random_normal(loc=0,
                                        scale=0.01,
                                        shape=(self.num_local,
                                               self.embedding_size),
                                        ctx=mx.gpu(local_rank))
         self.weight_mom = nd.zeros_like(self.weight)
     else:
         self.weight = nd.random_normal(loc=0,
                                        scale=0.01,
                                        shape=(self.num_local,
                                               self.embedding_size))
         self.weight_mom = nd.zeros_like(self.weight)
     self.weight_index_sampler = WeightIndexSampler(num_sample, num_local,
                                                    rank, name)
     pass
コード例 #3
0
def init_w_b(num_inputs, num_outputs, kv_url):
    # init params
    w = nd.random_normal(shape=(num_inputs, num_outputs))
    b = nd.random_normal(shape=num_outputs)

    # push params to kvstore
    push([w, b], kv_url, False)
コード例 #4
0
ファイル: linear_regression.py プロジェクト: theonej/predict
def train_section_class_classififer(section):

	data_loader, test_loader, data_size, num_outputs = train_data.get_data_loader(section)

	W = nd.random_normal(shape=(FEATURE_COUNT, num_outputs), ctx=model_context)
	b = nd.random_normal(shape=num_outputs, ctx=model_context)
	
	params=[W, b]

	for param in params:
		param.attach_grad()

	num_batches = data_size / train_data.BATCH_SIZE
	loss_sequence = []

	for epoch in range(EPOCHS):
		cumulative_loss = 0

		for index, (data, label) in enumerate(data_loader):
			data = data.as_in_context(model_context)
			label = label.as_in_context(model_context).reshape((-1, 1))

			with autograd.record():
				output = net(data, W, b)
				loss = squared_loss(output, label)
			loss.backward()
			SGD(params, LEARNING_RATE)
			cumulative_loss += loss.asscalar()
		print("Cumulative loss: %s"%(cumulative_loss / num_batches))
		loss_sequence.append(cumulative_loss)

	plot(loss_sequence)
コード例 #5
0
def gen_dataset():
    MAX_DOC_LENGTH = 100

    X_train = nd.random_normal(shape=(1000, MAX_DOC_LENGTH))
    y_train = nd.random.rand
    X_test = nd.random_normal(shape=(100, MAX_DOC_LENGTH))
    y_test = 0
    return (X_train, y_train), (X_test, y_test)
コード例 #6
0
    def __init__(self):
        self.w0 = nd.random_normal(shape=(1, 1),scale=0.01,dtype='float64')
        self.w = nd.random_normal(shape=(features, 1),scale=0.01,dtype='float64')
        self.bw = nd.random_normal(shape=(int((features*(features-1))/2),1),scale=0.0001,dtype='float64')
        self.params = [self.w, self.w0,self.bw]

        for param in self.params:
            param.attach_grad()
コード例 #7
0
ファイル: lstm.py プロジェクト: dolphinsUnderMoon/HoloXon
def get_parameters():
    # parameters for INPUT gate
    W_xi = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hi = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_i = nd.zeros(shape=config.hidden_dim)

    # parameters for FORGET gate
    W_xf = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hf = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_f = nd.zeros(shape=config.hidden_dim)

    # parameters for OUTPUT gate
    W_xo = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_ho = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_o = nd.zeros(shape=config.hidden_dim)

    # parameters for memory cell
    W_xc = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hc = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_c = nd.zeros(shape=config.hidden_dim)

    # output layer
    W_hy = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.output_dim))
    b_y = nd.zeros(shape=config.output_dim)

    parameters = [W_xi, W_hi, b_i,
                  W_xf, W_hf, b_f,
                  W_xo, W_ho, b_o,
                  W_xc, W_hc, b_c,
                  W_hy, b_y]

    for parameter in parameters:
        parameter.attach_grad()

    return parameters
コード例 #8
0
    def test_linear_regresion_gluon(self):
        num_inputs = 2
        num_outputs = 1
        num_examples = 10000

        def real_fn(X):
            return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2

        X = nd.random_normal(shape=(num_examples, num_inputs))
        noise = 0.01 * nd.random_normal(shape=(num_examples, ))
        y = real_fn(X) + noise

        batch_size = 4
        train_data = gluon.data.DataLoader(gluon.data.ArrayDataset(X, y),
                                           batch_size=batch_size,
                                           shuffle=True)

        net = gluon.nn.Dense(1)

        net.collect_params().initialize(mx.init.Normal(sigma=1.),
                                        ctx=model_ctx)

        square_loss = gluon.loss.L2Loss()

        trainer = gluon.Trainer(net.collect_params(), 'sgd',
                                {'learning_rate': 0.001})

        epochs = 1
        loss_sequence = []
        num_batches = num_examples / batch_size

        for e in range(epochs):
            cumulative_loss = 0
            # inner loop
            for i, (data, label) in enumerate(train_data):
                data = data.as_in_context(model_ctx)
                label = label.as_in_context(model_ctx)
                with autograd.record():
                    output = net(data)
                    loss = square_loss(output, label)
                loss.backward()
                trainer.step(batch_size)
                cumulative_loss += nd.mean(loss).asscalar()
            print("Epoch %s, loss: %s" % (e, cumulative_loss / num_examples))
            loss_sequence.append(cumulative_loss)

        params = net.collect_params()  # this returns a ParameterDict

        print('The type of "params" is a ', type(params))

        # A ParameterDict is a dictionary of Parameter class objects
        # therefore, here is how we can read off the parameters from it.

        for param in params.values():
            print(param.name, param.data())
コード例 #9
0
def get_params():
    # 输入门参数
    W_xi = nd.random_normal(scale=std, shape=(input_dim, hidden_dim), ctx=ctx)
    W_hi = nd.random_normal(scale=std, shape=(hidden_dim, hidden_dim), ctx=ctx)
    b_i = nd.zeros(hidden_dim, ctx=ctx)

    # 遗忘门参数
    W_xf = nd.random_normal(scale=std, shape=(input_dim, hidden_dim), ctx=ctx)
    W_hf = nd.random_normal(scale=std, shape=(hidden_dim, hidden_dim), ctx=ctx)
    b_f = nd.zeros(hidden_dim, ctx=ctx)

    # 输出门参数
    W_xo = nd.random_normal(scale=std, shape=(input_dim, hidden_dim), ctx=ctx)
    W_ho = nd.random_normal(scale=std, shape=(hidden_dim, hidden_dim), ctx=ctx)
    b_o = nd.zeros(hidden_dim, ctx=ctx)

    # 候选细胞参数
    W_xc = nd.random_normal(scale=std, shape=(input_dim, hidden_dim), ctx=ctx)
    W_hc = nd.random_normal(scale=std, shape=(hidden_dim, hidden_dim), ctx=ctx)
    b_c = nd.zeros(hidden_dim, ctx=ctx)

    # 输出层
    W_hy = nd.random_normal(scale=std, shape=(hidden_dim, output_dim), ctx=ctx)
    b_y = nd.zeros(output_dim, ctx=ctx)

    params = [
        W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
        W_hy, b_y
    ]
    for param in params:
        param.attach_grad()
    return params
コード例 #10
0
    def test_linear_regresion(self):

        num_inputs = 2
        num_outputs = 1
        num_examples = 10000

        def real_fn(X):
            return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2

        X = nd.random_normal(shape=(num_examples, num_inputs), ctx=data_ctx)
        noise = .1 * nd.random_normal(shape=(num_examples, ), ctx=data_ctx)
        y = real_fn(X) + noise

        batch_size = 4
        train_data = gluon.data.DataLoader(gluon.data.ArrayDataset(X, y),
                                           batch_size=batch_size,
                                           shuffle=True)

        w = nd.random_normal(shape=(num_inputs, num_outputs), ctx=model_ctx)
        b = nd.random_normal(shape=num_outputs, ctx=model_ctx)
        params = [w, b]

        for param in params:
            param.attach_grad()

        def net(X):
            return mx.nd.dot(X, w) + b

        def square_loss(yhat, y):
            return nd.mean((yhat - y)**2)

        def SGD(params, lr):
            for param in params:
                param[:] = param - lr * param.grad

        epochs = 10
        learning_rate = .0001
        num_batches = num_examples / batch_size

        for e in range(epochs):
            cumulative_loss = 0
            # inner loop
            for i, (data, label) in enumerate(train_data):
                data = data.as_in_context(model_ctx)
                label = label.as_in_context(model_ctx).reshape((-1, 1))
                with autograd.record():
                    output = net(data)
                    loss = square_loss(output, label)
                loss.backward()
                SGD(params, learning_rate)
                cumulative_loss += loss.asscalar()
            print(cumulative_loss / num_batches)

        print(w)
        print(b)
コード例 #11
0
    def _get_critic_output(self, net, s, a):
        w1_s = nd.random_normal(shape=(self.s_dim, 30))
        w1_a = nd.random_normal(shape=(self.a_dim, 30))
        b1 = nd.zeros((1, 30))
        params = [w1_s, w1_a, b1]
        for param in params:
            param.attach_grad()
        critic_input = nd.relu(nd.dot(s, w1_s) + nd.dot(a, w1_a) + b1)

        output = net(critic_input)
        return output
コード例 #12
0
def get_params():
    W_xh = nd.random_normal(scale=std, shape=(input_dim, hidden_dim), ctx=ctx)
    W_hh = nd.random_normal(scale=std, shape=(hidden_dim, hidden_dim), ctx=ctx)
    b_h = nd.zeros(hidden_dim, ctx=ctx)

    W_hy = nd.random_normal(scale=std, shape=(hidden_dim, output_dim), ctx=ctx)
    b_y  = nd.zeros(output_dim, ctx=ctx)

    params = [W_xh, W_hh, b_h, W_hy, b_y]
    for param in params:
        param.attach_grad()
    return params
コード例 #13
0
def review_network(net,
                   use_symbol=False,
                   timing=True,
                   num_rep=1,
                   dir_out='',
                   print_model_size=False):
    """inspect the network architecture & input - output
    use_symbol: set True to inspect the network in details
    timing: set True to estimate inference time of the network
    num_rep: number of inference"""
    # from my_func import get_model_size

    shape = (6, 4, 16, 160, 160)
    if use_symbol:
        x1 = symbol.Variable('x1')
        x2 = symbol.Variable('x2')
        y = net(x1, x2)
        if print_model_size:
            get_model_size(y, to_print=False)
        viz.plot_network(y,
                         shape={
                             'x1': shape,
                             'x2': shape
                         },
                         node_attrs={
                             "fixedsize": "false"
                         }).view('%sDenseMultipathNet' % dir_out)
    else:
        x1 = nd.random_normal(0.1, 0.02, shape=shape, ctx=ctx)
        x2 = nd.random_normal(0.1, 0.02, shape=shape, ctx=ctx)
        net.collect_params().initialize(initializer.Xavier(magnitude=2),
                                        ctx=ctx)
        net.hybridize(static_alloc=True, static_shape=True)

        if timing:
            s1 = time.time()
            y = net(x1, x2)
            y.wait_to_read()
            print("First run: %.5f" % (time.time() - s1))

            import numpy as np
            times = np.zeros(num_rep)
            for t in range(num_rep):
                x = nd.random_normal(0.1, 0.02, shape=shape, ctx=ctx)
                s2 = time.time()
                y = net(x1, x2)
                y.wait_to_read()
                times[t] = time.time() - s2
            print("Run with hybrid network: %.5f" % times.mean())
        else:
            y = net(x)
        print("Input size: ", x.shape)
        print("Output size: ", y.shape)
コード例 #14
0
ファイル: 25_song_maker.py プロジェクト: gxg0504/myai01
def get_params():
    # 隐含层
    W_xh = nd.random_normal(scale=std, shape=(vocab_size, hidden_size))
    W_hh = nd.random_normal(scale=std, shape=(hidden_size, hidden_size))
    b_h = nd.zeros(hidden_size)

    # 输出层
    W_hy = nd.random_normal(scale=std, shape=(hidden_size, vocab_size))
    b_y = nd.zeros(vocab_size)

    params = [W_xh, W_hh, b_h, W_hy, b_y]
    for param in params:
        param.attach_grad()
    return params
コード例 #15
0
ファイル: agent.py プロジェクト: DoktorMike/literate-telegram
 def __init__(self, state_size, action_size):
     self.state_size = state_size
     self.action_size = action_size
     self.epsilon = 0.8
     #  Set the scale for weight initialization and choose the number of hidden units in the fully-connected layer
     self.weight_scale = 0.01
     self.num_fc = 128
     self.num_outputs = action_size
     # Define the weights for the network
     self.W1 = nd.random_normal(shape=(20, 3, 3, 3),
                                scale=self.weight_scale,
                                ctx=ctx)
     self.b1 = nd.random_normal(shape=20, scale=self.weight_scale, ctx=ctx)
     self.W2 = nd.random_normal(shape=(50, 20, 5, 5),
                                scale=self.weight_scale,
                                ctx=ctx)
     self.b2 = nd.random_normal(shape=50, scale=self.weight_scale, ctx=ctx)
     self.W3 = nd.random_normal(shape=(36250, self.num_fc),
                                scale=self.weight_scale,
                                ctx=ctx)
     self.b3 = nd.random_normal(shape=128, scale=self.weight_scale, ctx=ctx)
     self.W4 = nd.random_normal(shape=(self.num_fc, self.num_outputs),
                                scale=self.weight_scale,
                                ctx=ctx)
     self.b4 = nd.random_normal(shape=self.num_outputs,
                                scale=self.weight_scale,
                                ctx=ctx)
     self.params = [
         self.W1, self.b1, self.W2, self.b2, self.W3, self.b3, self.W4,
         self.b4
     ]
     for param in self.params:
         param.attach_grad()
コード例 #16
0
 def __init__(self, e_dim):
     super(CrossCompress, self).__init__()
     self.e_dim = e_dim
     self.weight_vv = nd.random_normal(shape=(self.e_dim, 1))
     self.weight_ev = nd.random_normal(shape=(self.e_dim, 1))
     self.weight_ve = nd.random_normal(shape=(self.e_dim, 1))
     self.weight_ee = nd.random_normal(shape=(self.e_dim, 1))
     self.bias_v = nd.zeros(self.e_dim)
     self.bias_e = nd.zeros(self.e_dim)
     params = [
         self.weight_vv, self.weight_ev, self.weight_ve, self.weight_ee,
         self.bias_v, self.bias_e
     ]
     for param in params:
         param.attach_grad()
コード例 #17
0
 def forward(self, x):
     # Because this encoder decoder setup uses convolutional layers 
     # There is no need to flatten anything
     # x.shape = (batch_size, n_channels, width, height)
     
     # Get the latent layer
     latent_layer = self.encoder(x)
     
     # Split the latent layer into latent means and latent log vars
     latent_mean = nd.split(latent_layer, axis=1, num_outputs=2)[0]
     latent_logvar = nd.split(latent_layer, axis=1, num_outputs=2)[1]
     
     # Compute the latent variable with reparametrization trick applied
     eps = nd.random_normal(0, 1, shape=(x.shape[0], self.n_latent), ctx=CTX)
     latent_z = latent_mean + nd.exp(0.5 * latent_logvar) * eps
     
     # Compute the KL Divergence between latent variable and standard normal
     kl_div_loss = -0.5 * nd.sum(1 + latent_logvar - latent_mean * latent_mean - nd.exp(latent_logvar),
                                      axis=1)
     
     # Use the decoder to generate output
     x_hat = self.decoder(latent_z.reshape((x.shape[0], self.n_latent, 1, 1)))
     
     # Compute the pixel-by-pixel loss; this requires that x and x_hat be flattened
     x_flattened = x.reshape((x.shape[0], -1))
     x_hat_flattened = x_hat.reshape((x_hat.shape[0], -1))
     logloss = - nd.sum(x_flattened*nd.log(x_hat_flattened + 1e-10) +
                             (1-x_flattened)*nd.log(1-x_hat_flattened+1e-10),
                             axis=1)
     
     # Sum up the loss
     loss = kl_div_loss + logloss * self.pbp_weight
     
     return loss
コード例 #18
0
    def train(self):
        workers = [
            Worker(self.params, self.n_episode, self.in_queue, self.out_queue)
            for _ in range(self.hparams.n_threads)
        ]

        print(
            colored(
                "===> Tranning Start with thread {}".format(
                    self.hparams.n_threads), "yellow"))
        for worker in workers:
            worker.start()

        # @TODO:
        dummy_history = nd.random_normal(shape=(1, 4, 84, 84))
        self.actor(dummy_history)
        self.critic(dummy_history)
        is_alive = True
        while is_alive:
            if self.in_queue.empty() is False:
                self.update_model(self.in_queue.get())
                self.raise_weight()

            is_alive = False
            for worker in workers:
                is_alive = is_alive | worker.is_alive()

        for worker in workers:
            worker.join()

        print(colored("===> Training End", "yellow"))

        self.close()
コード例 #19
0
    def __init__(self,
                 num_capsule,
                 dim_vector,
                 context=cpu,
                 iter_routing=1,
                 **kwargs):
        super(DigitCaps, self).__init__(**kwargs)
        self.num_capsule = num_capsule  #10
        self.dim_vector = dim_vector  #16

        self.iter_routing = iter_routing  #3

        self.batch_size = 1
        self.input_num_capsule = 1152
        self.input_dim_vector = 8
        self.context = context

        self.routing_weight_initial = True

        if self.routing_weight_initial:
            self.routing_weight = nd.random_normal(
                shape=(1, self.input_num_capsule, self.num_capsule,
                       self.input_dim_vector, self.dim_vector),
                name='routing_weight').as_in_context(self.context)
            self.routing_weight_initial = False

        self.routing_weight.attach_grad()

        #  (1, 1152, 10, 8, 16)
        self.W_ij = self.params.get(
            'weight',
            shape=(1, self.input_num_capsule, self.num_capsule,
                   self.input_dim_vector, self.dim_vector))
コード例 #20
0
 def sample(self, mu, sigma):
     epsilon = nd.random_normal(shape=mu.shape,
                                loc=0.,
                                scale=1.,
                                ctx=self.args.ctx)
     out = mu + sigma * epsilon
     return out
コード例 #21
0
    def forward(self, x):
        # x is input of shape (n_batch, n_channels, width, height)
        batch_size = x.shape[0]
        x = x.reshape(batch_size, -1)
        self.loss_net.batch_size = batch_size

        # Get the latent layer
        latent_vals = self.encoder(x)

        # Split the latent layer into latent means and latent log vars
        latent_mean = nd.split(latent_vals, axis=1, num_outputs=2)[0]
        latent_logvar = nd.split(latent_vals, axis=1, num_outputs=2)[1]

        # Use the reparametrization trick to ensure differentiability of the latent
        # variable
        eps = nd.random_normal(loc=0,
                               scale=1,
                               shape=(batch_size, self.n_latent),
                               ctx=CTX)
        latent_z = latent_mean + nd.exp(0.5 * latent_logvar) * eps

        # Use the decoder to generate output
        x_hat = self.decoder(latent_z)
        self.x_hat = x_hat

        # Use the vgg loss net to compute the loss
        loss = self.loss_net(x, x_hat)
        return loss
コード例 #22
0
    def query(self, image_text_pairs):
        if self.pool_size == 0:
            return image_text_pairs
        ret_images = []
        ret_text_feats = []
        images, text_feats = image_text_pairs

        for i in range(images.shape[0]):
            image = nd.expand_dims(images[i], axis=0)
            text_feat = nd.expand_dims(text_feats[i], axis=0)
            if self.num_imgs < self.pool_size:
                self.num_imgs = self.num_imgs + 1
                self.images.append(image)
                self.text_feats.append(text_feat)
                ret_images.append(image)
                ret_text_feats.append(text_feat)
            else:
                p = nd.random_normal(0, 1, shape=(1, )).asscalar()
                if p < 0.5:
                    random_index = nd.random_uniform(0, self.pool_size-1, shape=(1, )).astype(np.uint8).asscalar()
                    tmp_img = self.images[random_index].copy()
                    tmp_text_feat = self.text_feats[random_index].copy()
                    self.images[random_index] = image
                    self.text_feats[random_index] = text_feat
                    ret_images.append(tmp_img)
                    ret_text_feats.append(tmp_text_feat)
                else:
                    ret_images.append(image)
                    ret_text_feats.append(text_feat)
        ret_images = nd.concat(*ret_images, dim=0)
        ret_text_feats = nd.concat(*ret_text_feats, dim=0)
        return [ret_images, ret_text_feats]
コード例 #23
0
    def generate(self, x):
        # Because forward() returns the loss values, we still need a method that returns the generated image
        # Which is basically the forward process, up to (not including) the flattening of x_hat

        # x should be image arrays (4-dimensional) but encoder should be able
        # to handle this so I am not going flatten it

        # Use the encoder network to compute the values of latent layers
        latent_layer = self.encoder(x)

        # Split the latent layer into latent means and latent log vars
        latent_mean = nd.split(latent_layer, axis=1, num_outputs=2)[0]
        latent_logvar = nd.split(latent_layer, axis=1, num_outputs=2)[1]

        # Use the reparametrization trick to ensure differentiability of the latent
        # variable
        eps = nd.random_normal(loc=0,
                               scale=1,
                               shape=(x.shape[0], self.n_latent),
                               ctx=CTX)
        latent_z = latent_mean + nd.exp(0.5 * latent_logvar) * eps

        # Use the decoder to generate output, then flatten it to compute loss
        return self.decoder(latent_z).reshape(-1, self.n_out_channels,
                                              self.out_width, self.out_height)
コード例 #24
0
    def generate(self, x):
        # Repeat the process of forward, but stop at x_hat and return it
        # input x is image and thus 4-dimensional ndarray
        batch_size, n_channels_in, input_width, input_height = x.shape

        # First run it through the encoder

        x_flattened = x.reshape(batch_size, -1)
        latent_layer = self.encoder(x_flattened)

        # Split latent layer into latent mean and latent log variances
        latent_mean = nd.split(latent_layer, axis=1, num_outputs=2)[0]
        latent_logvar = nd.split(latent_layer, axis=1, num_outputs=2)[1]

        # Compute the latent variable's value using the reparametrization trick
        eps = nd.random_normal(loc=0,
                               scale=1,
                               shape=(batch_size, self.n_latent),
                               ctx=CTX)
        latent_z = latent_mean + nd.exp(0.5 * latent_logvar) * eps

        # At this point, also compute the KL_Divergence between latent variable and
        # Gaussian(0, 1)
        KL_div_loss = -0.5 * nd.sum(1 + latent_logvar - latent_mean *
                                    latent_mean - nd.exp(latent_logvar),
                                    axis=1)

        # Run the latent variable through the decoder to get the flattened generated image
        x_hat_flattened = self.decoder(latent_z)

        # Inflate the flattened output to be fed into the discriminator
        x_hat = x_hat_flattened.reshape(batch_size, n_channels_in, input_width,
                                        input_height)

        return x_hat
コード例 #25
0
def init_params():
    w = nd.random_normal(scale=1, shape=(num_input, 1))
    b = nd.zeros(shape=(1, ))
    params = [w, b]
    for param in params:
        param.attach_grad()
    return params
コード例 #26
0
 def mutation(self, weights, mutation_step):
     """ Perform mutations on the given weights based on the mutation step size """
     new_weights = []
     for layer in weights:
         weight_mutations = mutation_step * nd.random_normal(
             0, 1, shape=layer.shape)
         new_weights.append(layer + weight_mutations)
     return new_weights
コード例 #27
0
ファイル: sampler.py プロジェクト: chr5tphr/ecGAN
def random_counter(num, K, ctx, d=100, ohkw={}):
    nrow, ncol = K, (num-1)//K+1
    cond_col   = nd.arange(nrow, ctx=ctx).reshape([1, nrow])

    noise      = nd.random_normal(shape=(num, d), ctx=ctx)
    cond       = cond_col .tile([ncol, 1]).one_hot(K, **ohkw).reshape([ncol*nrow,   K])[:num]

    return noise, cond
コード例 #28
0
def getfake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))   # fake weight vector for separation
    bfake = nd.random_normal(shape=(1))            # fake bias
    wfake = wfake / nd.norm(wfake)                 # rescale to unit length

    # making some linearly separable data, simply by chosing the labels accordingly
    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))
    i = 0
    while (i < samples):
        tmp = nd.random_normal(shape=(1,dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) & (abs(margin.asscalar()) > epsilon):
            X[i,:] = tmp[0]
            Y[i] = 1 if margin.asscalar() > 0 else -1
            i += 1
    return X, Y
コード例 #29
0
ファイル: gru.py プロジェクト: dolphinsUnderMoon/HoloXon
def get_parameters():
    # parameters for UPDATE gate
    W_xz = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hz = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_z = nd.zeros(shape=config.hidden_dim)

    # parameters for RESET gate
    W_xr = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hr = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_r = nd.zeros(shape=config.hidden_dim)

    # parameters for candidate hidden state
    W_xh = nd.random_normal(scale=config.std, shape=(config.input_dim, config.hidden_dim))
    W_hh = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.hidden_dim))
    b_h = nd.zeros(shape=config.hidden_dim)

    # output layer
    W_hy = nd.random_normal(scale=config.std, shape=(config.hidden_dim, config.output_dim))
    b_y = nd.zeros(shape=config.output_dim)

    parameters = [W_xz, W_hz, b_z,
                  W_xr, W_hr, b_r,
                  W_xh, W_hh, b_h,
                  W_hy, b_y]

    for parameter in parameters:
        parameter.attach_grad()

    return parameters
コード例 #30
0
def get_params():
    w_xh = nd.random_normal(scale=std,
                            shape=(vocab_size, hidden_size),
                            ctx=ctx)
    w_hh = nd.random_normal(scale=std,
                            shape=(hidden_size, hidden_size),
                            ctx=ctx)
    b_h = nd.zeros(hidden_size, ctx=ctx)

    w_hy = nd.random_normal(scale=std,
                            shape=(hidden_size, vocab_size),
                            ctx=ctx)
    b_y = nd.zeros(vocab_size, ctx=ctx)

    params = [w_xh, w_hh, b_h, w_hy, b_y]
    for p in params:
        p.attach_grad()
    return params
コード例 #31
0
def get_inception_score_gl(G, ctx):
    all_samples = []
    for i in range(10):
        samples_100 = nd.random_normal(0, 1, shape=(100, nz, 1, 1), ctx=ctx)
        all_samples.append(G(samples_100).as_in_context(mx.cpu()).asnumpy())
    all_samples = np.concatenate(all_samples, axis=0)
    # all_samples = np.add(np.multiply(all_samples, 0.5), 0.5)
    all_samples = all_samples.reshape((-1, 3, 64, 64))
    return icc(list(all_samples), resize=True, splits=10)
コード例 #32
0
ファイル: mxnet_samples.py プロジェクト: sharmasx/mlheaven
def getfake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))  # fake weight vector for separation
    bfake = nd.random_normal(shape=(1))  # fake bias
    wfake = wfake / nd.norm(wfake)  # rescale to unit length

    # making some linearly separable data, simply by chosing the labels accordingly
    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))

    i = 0
    while (i < samples):
        tmp = nd.random_normal(shape=(1, dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) & (abs(margin.asscalar()) > epsilon):
            X[i, :] = tmp
            Y[i] = 2 * (margin > 0) - 1
            i += 1
    return X, Y
コード例 #33
0
ファイル: sampler.py プロジェクト: chr5tphr/ecGAN
def random_uniform(num, K, ctx, d=100, ohkw={}):
    ncol, nrow = (num-1)//K+1, K
    noise_row  = nd.random_normal(shape=(ncol, 1, d), ctx=ctx)
    cond_col   = nd.random.uniform(0, K, shape=(1, nrow), ctx=ctx).floor()

    noise      = noise_row.tile([1, nrow])                   .reshape([ncol*nrow, d])[:num]
    cond       = cond_col .tile([ncol, 1]).one_hot(K, **ohkw).reshape([ncol*nrow, K])[:num]

    return noise, cond
コード例 #34
0
def get_fake(samples, dimensions, epsilon):
    wfake = nd.random_normal(shape=(dimensions))
    bfake = nd.random_normal(shape=(1))
    wfake = wfake / nd.norm(wfake)

    X = nd.zeros(shape=(samples, dimensions))
    Y = nd.zeros(shape=(samples))

    i = 0
    while i < samples:
        tmp = nd.random_normal(shape=(1, dimensions))
        margin = nd.dot(tmp, wfake) + bfake
        if (nd.norm(tmp).asscalar() < 3) and (abs(
                margin.asscalar() > epsilon)):
            X[i, :] = tmp
            Y[i] = 1 if margin.ascalar() > 0 else -1
            i += 1
    return X, Y
コード例 #35
0
 def _test():
     anchors = [[33, 48, 50, 108, 127, 96], [78, 202, 178, 179, 130, 295],
                [332, 195, 228, 326, 366, 359]]
     strides = [8, 16, 32]
     generator = YOLOv3TargetGenerator(20, strides, anchors)
     img = nd.random_normal(shape=(3, 416, 416))
     gt_box = nd.array([[50, 50, 100., 100, 1], [0, 150, 100, 200, 2]])
     args = generator(img, gt_box)
     nd.save('out', list(args))
     print(args)
コード例 #36
0
ファイル: sampler.py プロジェクト: chr5tphr/ecGAN
def grow(num, K, ctx, d=100, ohkw={}):
    nrow, ncol  = K, (num-1)//K+1
    noise_one   = nd.random_normal(shape=(1, 1, d), ctx=ctx)
    noise       = noise_one.tile([ncol, nrow]).reshape([ncol*nrow, d])[:num]

    onval = ohkw.get('on_value', 1.0)
    offval = ohkw.get('off_value', -1.0)

    cond_col_d  = nd.arange(nrow, ctx=ctx).reshape([1, nrow]).tile([ncol, 1])
    cond_col    = cond_col_d.one_hot(K, **ohkw)
    alpha       = linspace(offval, onval, ncol, end=True, ctx=ctx).reshape([ncol, 1, 1]) * cond_col_d.one_hot(K) + offval * cond_col_d.one_hot(K, off_value=1., on_value=0.)
    cond        = alpha.reshape([ncol*nrow, K])[:num]

    return noise, cond
コード例 #37
0
ファイル: sampler.py プロジェクト: chr5tphr/ecGAN
def transform(num, K, ctx, d=100, ohkw={}):
    nrow, ncol  = K, (num-1)//K+1
    noise_one   = nd.random_normal(shape=(1, 1, d), ctx=ctx)
    noise       = noise_one.tile([ncol, nrow]).reshape([ncol*nrow, d])[:num]

    onval = ohkw.get('on_value', 1.0)
    offval = ohkw.get('off_value', -1.0)

    cond_col_ds = nd.arange(nrow, ctx=ctx).reshape([1, nrow]).tile([ncol, 1])
    cond_col_dt = cond_col_ds[:, list(range(1,nrow)) + [0]]
    cond_col_s  = cond_col_ds.one_hot(K)
    cond_col_t  = cond_col_dt.one_hot(K)

    alpha       = linspace(offval, onval, ncol, end=True, ctx=ctx).reshape([ncol, 1, 1]) * cond_col_t
    beta        = linspace(onval, offval, ncol, end=True, ctx=ctx).reshape([ncol, 1, 1]) * cond_col_s
    offvals     = offval * cond_col_ds.one_hot(K, off_value=1., on_value=0.) * cond_col_dt.one_hot(K, off_value=1., on_value=0.)
    cond        = (beta + alpha + offvals).reshape([ncol*nrow, K])[:num]

    return noise, cond
コード例 #38
0
ファイル: lstm.py プロジェクト: dolphinsUnderMoon/HoloXon
    _outputs = []

    for X in _inputs:
        # compute INPUT gate from input and last/initial hidden state
        input_gate = nd.sigmoid(nd.dot(X, W_xi) + nd.dot(H, W_hi) + b_i)
        # compute FORGET gate from input and last/initial hidden state
        forget_gate = nd.sigmoid(nd.dot(X, W_xf) + nd.dot(H, W_hf) + b_f)
        # compute OUTPUT gate from input and last/initial hidden state
        output_gate = nd.sigmoid(nd.dot(X, W_xo) + nd.dot(H, W_ho) + b_o)
        # compute memory cell candidate from input and last/initial hidden state
        memory_cell_candidate = nd.tanh(nd.dot(X, W_xc) + nd.dot(H, W_hc) + b_c)
        # compute memory cell from last memory cell and memory cell candidate
        C = forget_gate * C + input_gate * memory_cell_candidate
        # compute hidden state from output gate and memory cell
        H = output_gate * nd.tanh(C)
        # compute output from hidden state
        Y = nd.dot(H, W_hy) + b_y
        _outputs.append(Y)

    return _outputs, H, C


if __name__ == '__main__':
    initial_state_h = nd.zeros(shape=(config.batch_size, config.hidden_dim))
    initial_state_c = nd.zeros(shape=(config.batch_size, config.hidden_dim))
    dump_data = [nd.random_normal(shape=(config.batch_size, config.input_dim)) for _ in range(config.num_steps)]

    parameters = get_parameters()
    _outputs, final_state, memory_cell = lstm(dump_data, initial_state_h, initial_state_c, *parameters)

    print(_outputs, final_state, memory_cell)
コード例 #39
0
ファイル: lstm.py プロジェクト: HaoranYi/gitProj
labels = one_hots(time_numerical[1:seq_length*num_samples+1])
train_label = labels.reshape((num_batches, batch_size, seq_length, vocab_size))
train_label = nd.swapaxes(train_label, 1, 2)

########################
#  allocate parameter
########################

num_inputs = vocab_size
num_hidden = 256
num_outputs = vocab_size

########################
#  Weights connecting the inputs to the hidden layer
########################
Wxg = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxi = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxf = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxo = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01

########################
#  Recurrent weights connecting the hidden layer across time steps
########################
Whg = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whi = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whf = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Who = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

########################
#  Bias vector for hidden layer
########################
コード例 #40
0
ファイル: gru.py プロジェクト: HaoranYi/gitProj
labels = one_hots(time_numerical[1:seq_length*num_samples+1])
train_label = labels.reshape((num_batches, batch_size, seq_length, vocab_size))
train_label = nd.swapaxes(train_label, 1, 2)

########################
#  allocate parameter
########################

num_inputs = vocab_size
num_hidden = 256
num_outputs = vocab_size

########################
#  Weights connecting the inputs to the hidden layer
########################
Wxz = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxr = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01
Wxh = nd.random_normal(shape=(num_inputs,num_hidden), ctx=ctx) * .01

########################
#  Recurrent weights connecting the hidden layer across time steps
########################
Whz = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whr = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01
Whh = nd.random_normal(shape=(num_hidden,num_hidden), ctx=ctx)* .01

########################
#  Bias vector for hidden layer
########################
bz = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
br = nd.random_normal(shape=num_hidden, ctx=ctx) * .01
コード例 #41
0
ファイル: mxnet_samples.py プロジェクト: sharmasx/mlheaven
#         plt.show()

# autograd -


import mxnet as mx
from mxnet import nd, autograd
mx.random.seed(1)



num_inputs = 2
num_outputs = 1
num_examples = 10000

X = nd.random_normal(shape=(num_examples, num_inputs))
y = 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2 + .01 * nd.random_normal(shape=(num_examples,))

batch_size = 4
train_data = mx.io.NDArrayIter(X, y, batch_size, shuffle=True) # stochastic
batch = train_data.next()
print(batch.data[0])
print(batch.label[0])

# end of an epoch
# reset reshuffles the dat


counter = 0
train_data.reset()
for batch in train_data:
コード例 #42
0
ファイル: sampler.py プロジェクト: chr5tphr/ecGAN
def fully_random_uniform(num, K, ctx, d=100, ohkw={}):
    noise      = nd.random_normal(shape=(num, d), ctx=ctx)
    cond_flat  = nd.random.uniform(0, K, shape=num, ctx=ctx).floor().one_hot(K, **ohkw)

    return noise, cond