def forward(self, x): if self.upsample: x = F.UpSampling(x, scale=self.upsample, sample_type='nearest') """ if self.reflection_padding != 0: x = self.reflection_pad(x) """ out = self.conv2d(x) return out
def test_upsampling(): print("test upsampling") tmp_dir = DIR + "upsampling/" os.makedirs(tmp_dir + "0/", exist_ok=True) shape = np.random.randint(low=3, high=5, size=(4)) print(shape) a = np.random.randint(low=-127, high=127, size=shape) np.save(tmp_dir + "0/in_0.npy", a.astype("int32")) params = {'method': 'NEAREST_NEIGHBOR', 'layout': 'NCHW', 'scale': 1} save_dict(params, tmp_dir + "0/attr.txt") params = {'scale': 1, 'sample_type': 'nearest'} b = nd.UpSampling(nd.array(a), **params) np.save(tmp_dir + "0/out_0.npy", b.asnumpy().astype("int32")) print(b.shape) print(b) os.makedirs(tmp_dir + "1/", exist_ok=True) shape = np.random.randint(low=3, high=4, size=(4)) print(shape) a = np.random.randint(low=-127, high=127, size=shape) np.save(tmp_dir + "1/in_0.npy", a.astype("int32")) params = {'method': 'NEAREST_NEIGHBOR', 'layout': 'NCHW', 'scale': 2} save_dict(params, tmp_dir + "1/attr.txt") params = {'scale': 2, 'sample_type': 'nearest'} b = nd.UpSampling(nd.array(a), **params) np.save(tmp_dir + "1/out_0.npy", b.asnumpy().astype("int32")) print(b.shape) os.makedirs(tmp_dir + "2/", exist_ok=True) shape = np.random.randint(low=2, high=4, size=(4)) print(shape) a = np.random.randint(low=-127, high=127, size=shape) np.save(tmp_dir + "2/in_0.npy", a.astype("int32")) params = {'method': 'NEAREST_NEIGHBOR', 'layout': 'NCHW', 'scale': 3} save_dict(params, tmp_dir + "2/attr.txt") params = {'scale': 3, 'sample_type': 'nearest'} b = nd.UpSampling(nd.array(a), **params) np.save(tmp_dir + "2/out_0.npy", b.asnumpy().astype("int32")) print(b.shape) print(b)
def forward(self, x): if self.upsample: x = F.UpSampling(x, scale=self.upsample, sample_type='nearest') out = self.conv2d(x) return out