コード例 #1
0
 def symbolic(exec_backward=True):
     x = mx.sym.Variable('x')
     y = mx.sym.Variable('y')
     z = mx.sym.Variable('z')
     x_shape = (2, 2)
     z_shape = (3, 2)
     inputs = [x, y]
     out = mx.symbol.ElementWiseSum(*inputs, name="esum")
     out = mx.sym.dot(z, out)
     out2 = mx.sym.random.normal(0, -1, x_shape, ctx=default_context())
     out = mx.sym.dot(out, out2)
     out = mx.sym.make_loss(out)
     arr = {
         'x': mx.nd.random.normal(0, 1, x_shape, ctx=default_context()),
         'y': mx.nd.random.normal(0, 1, x_shape, ctx=default_context()),
         'z': mx.nd.random.normal(0, 1, z_shape, ctx=default_context())
     }
     arr_grad = {
         'x': mx.nd.empty(x_shape),
         'y': mx.nd.empty(x_shape),
         'z': mx.nd.empty(z_shape)
     }
     exec1 = out.bind(ctx=default_context(), args=arr, args_grad=arr_grad)
     outputs = exec1.forward()
     if exec_backward:
         exec1.backward()
         exec1.grad_arrays[0].asnumpy()
     else:
         outputs[0].asnumpy()
コード例 #2
0
 def symbolic(exec_backward=True, waitall=True):
     x = mx.sym.Variable('x')
     y = mx.sym.Variable('y')
     z = mx.sym.Variable('z')
     x_shape = (2, 2)
     z_shape = (3, 2)
     inputs = [x, y]
     out = mx.symbol.ElementWiseSum(*inputs, name="esum")
     out = mx.sym.dot(z, out)
     out2 = mx.sym.random.normal(0, -1, x_shape, ctx=default_context())
     out = mx.sym.dot(out, out2)
     out = mx.sym.make_loss(out)
     arr = {'x': mx.nd.random.normal(0, 1, x_shape, ctx=default_context()),
            'y': mx.nd.random.normal(0, 1, x_shape, ctx=default_context()),
            'z': mx.nd.random.normal(0, 1, z_shape, ctx=default_context())}
     arr_grad = {'x': mx.nd.empty(x_shape), 'y': mx.nd.empty(x_shape), 'z': mx.nd.empty(z_shape)}
     exec1 = out.bind(ctx=default_context(), args=arr, args_grad=arr_grad)
     outputs = exec1.forward()
     if exec_backward:
         exec1.backward()
         if waitall:
             mx.nd.waitall()
         else:
             exec1.grad_arrays[0].asnumpy()
     else:
         if waitall:
             mx.nd.waitall()
         else:
             outputs[0].asnumpy()
コード例 #3
0
 def gluon(exec_wait=True):
     model = nn.Sequential()
     model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False))
     model.add(nn.Dropout(1))
     model.add(nn.Dense(64, activation='tanh', in_units=256),
               nn.Dense(32, in_units=64))
     x = mx.sym.var('data')
     y = model(x)
     model.collect_params().initialize(ctx=[default_context()])
     z = model(mx.nd.random.normal(10, -10, (32, 2, 10), ctx=default_context()))
     if exec_wait:
         z.wait_to_read()
コード例 #4
0
 def gluon(exec_wait=True):
     model = nn.Sequential()
     model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False))
     model.add(nn.Dropout(1))
     model.add(nn.Dense(64, activation='tanh', in_units=256),
               nn.Dense(32, in_units=64))
     x = mx.sym.var('data')
     y = model(x)
     model.collect_params().initialize(ctx=[default_context()])
     z = model(
         mx.nd.random.normal(10, -10, (32, 2, 10), ctx=default_context()))
     if exec_wait:
         z.wait_to_read()
コード例 #5
0
def test_exc_multiple_waits():
    caught = False
    try:
        a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        a.wait_to_read()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    try:
        b = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        b.wait_to_read()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
コード例 #6
0
def test_exc_multiple_waits():
    caught = False
    try:
        a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        a.wait_to_read()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    try:
        b = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        b.wait_to_read()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
コード例 #7
0
def test_norm(ctx=default_context()):
    np_arr = np.random.uniform(size=(3, 3, 3, 3))
    mx_arr = mx.nd.array(np_arr, ctx=ctx)
    arr1 = np.linalg.norm(np_arr, keepdims=False)
    arr2 = mx.nd.norm(mx_arr, keepdims=False)
    print(arr1)
    print(arr2.asnumpy())
    mx.test_utils.assert_almost_equal(arr1, arr2.asnumpy()[0])

    for i in range(4):
        arr1 = np.linalg.norm(np_arr, axis=i, keepdims=False)
        arr2 = mx.nd.norm(mx_arr, axis=i, keepdims=False)
        assert arr1.shape == arr2.shape
        mx.test_utils.assert_almost_equal(arr1, arr2.asnumpy())

        arr1 = np.linalg.norm(np_arr, axis=i, keepdims=True)
        arr2 = mx.nd.norm(mx_arr, axis=i, keepdims=True)
        assert arr1.shape == arr2.shape
        mx.test_utils.assert_almost_equal(arr1, arr2.asnumpy())
        if (i < 3):
            arr1 = np.linalg.norm(np_arr, axis=(i, i+1), keepdims=False)
            arr2 = mx.nd.norm(mx_arr, axis=(i, i+1), keepdims=False)
            assert arr1.shape == arr2.shape
            mx.test_utils.assert_almost_equal(arr1, arr2.asnumpy())
            arr1 = np.linalg.norm(np_arr, axis=(i, i+1), keepdims=True)
            arr2 = mx.nd.norm(mx_arr, axis=(i, i+1), keepdims=True)
            assert arr1.shape == arr2.shape
            mx.test_utils.assert_almost_equal(arr1, arr2.asnumpy())
コード例 #8
0
def check_ste(net_type_str, w_init, hybridize, in_data, ctx=None):
    ctx = ctx or default_context()

    net = eval(net_type_str)(w_init=w_init)
    if hybridize:
        net.hybridize()
    # Init
    net.collect_params().initialize(mx.init.Constant([w_init]), ctx=ctx)

    # Test:
    in_data = in_data.as_in_context(ctx)
    with mx.autograd.record():
        out = net(in_data)
    assert all(out == net.expected_output(in_data, w_init)), net_type_str + " output is " + str(out) + ", but" + \
                                                             " expected " + str(net.expected_output(in_data, w_init))

    out.backward()
    assert all(net.w.grad() == net.expected_grads(in_data, w_init)), net_type_str + " w grads are " + \
                                                                     str(net.w.grad()) + " but expected " + \
                                                                     str(net.expected_grads(in_data, w_init))
    with mx.autograd.record():
        out = net(in_data)
    assert all(out == net.expected_output(in_data, w_init)), net_type_str + " output is " + str(out) + ", but" + \
                                                             " expected " + str(net.expected_output(in_data, w_init))
    out.backward()
    assert all(net.w.grad() == net.expected_grads(in_data, w_init)), net_type_str + " w grads are " + \
                                                                     str(net.w.grad()) + " but expected " + \
                                                                     str(net.expected_grads(in_data, w_init))
コード例 #9
0
 def mutable_var_check(waitall=False):
     a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
     a = mx.nd.dot(a, a)
     if waitall:
         mx.nd.waitall()
     else:
         a.asnumpy()
コード例 #10
0
 def mutable_var_check(waitall=False):
     a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
     a = mx.nd.dot(a, a)
     if waitall:
         mx.nd.waitall()
     else:
         a.asnumpy()
コード例 #11
0
def testSoftmaxOutput():
    x = mx.sym.Variable('x')
    label = mx.sym.Variable('label')
    x_nd = mx.nd.ones((LARGE_X, SMALL_Y))
    grad_x = mx.nd.zeros((LARGE_X, SMALL_Y))
    label_nd = mx.nd.ones((LARGE_X))

    sym = mx.sym.SoftmaxOutput(data=x,
                               label=label,
                               ignore_label=0,
                               use_ignore=False)
    ex = sym.bind(ctx=default_context(),
                  args={
                      'x': x_nd,
                      'label': label_nd
                  },
                  args_grad={'x': grad_x})

    ex.forward(is_train=True)
    softmax_out = ex.outputs[0][0].asnumpy()
    expected_softmax_out = (1 / SMALL_Y) * mx.nd.ones((SMALL_Y)).asnumpy()
    assert np.isclose(softmax_out, expected_softmax_out).all()

    ex.backward(is_train=True)
    grad_out = ex.grad_arrays[0][0].asnumpy()
    k = int(label_nd[0].asscalar())
    expected_grad_out = np.zeros((SMALL_Y, ))
    expected_grad_out[k] = -1
    assert np.isclose(grad_out - softmax_out, expected_grad_out).all()
コード例 #12
0
def test_dropout():
    shape = (10, 10)
    x = mx.sym.var('data')
    y = mx.sym.Dropout(x, p=1, cudnn_off=True)
    exe = y.simple_bind(ctx=default_context(), data=shape)
    exe.arg_arrays[0][:] = 1
    out = exe.forward(is_train=True)
    out[0].wait_to_read()
コード例 #13
0
def test_dropout():
    shape = (LARGE_X, SMALL_Y)
    x = mx.sym.var('data')
    y = mx.sym.Dropout(x, p=1, cudnn_off=True)
    exe = y.simple_bind(ctx=default_context(), data=shape)
    exe.arg_arrays[0][:] = 1
    out = exe.forward(is_train=True)
    assert out.shape == out.shape
コード例 #14
0
def test_multiple_waitalls():
    caught = False
    try:
        a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        mx.nd.waitall()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    mx.nd.waitall()
コード例 #15
0
def test_exc_post_fail():
    caught = False
    try:
        a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
        a.asnumpy()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    b.asnumpy()
コード例 #16
0
def test_multiple_waitalls():
    caught = False
    try:
        a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
        mx.nd.waitall()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    mx.nd.waitall()
コード例 #17
0
def test_exc_post_fail():
    caught = False
    try:
        a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
        a.asnumpy()
    except MXNetError:
        caught = True
    assert caught, "No exception thrown"
    b.asnumpy()
コード例 #18
0
 def check_fluent_regular(func, kwargs, shape=(5, 17, 1), equal_nan=False):
     with mx.name.NameManager():
         data = mx.nd.random_uniform(shape=shape, ctx=default_context())
         regular = getattr(mx.ndarray, func)(data, **kwargs)
         fluent = getattr(data, func)(**kwargs)
         if isinstance(regular, list):
             for r, f in zip(regular, fluent):
                 assert almost_equal(r.asnumpy(), f.asnumpy(), equal_nan=equal_nan)
         else:
             assert almost_equal(regular.asnumpy(), fluent.asnumpy(), equal_nan=equal_nan)
コード例 #19
0
 def check_fluent_regular(func, kwargs, shape=(5, 17, 1), equal_nan=False):
     with mx.name.NameManager():
         data = mx.nd.random_uniform(shape=shape, ctx=default_context())
         regular = getattr(mx.ndarray, func)(data, **kwargs)
         fluent = getattr(data, func)(**kwargs)
         if isinstance(regular, list):
             for r, f in zip(regular, fluent):
                 assert almost_equal(r.asnumpy(), f.asnumpy(), equal_nan=equal_nan)
         else:
             assert almost_equal(regular.asnumpy(), fluent.asnumpy(), equal_nan=equal_nan)
コード例 #20
0
def compare_optimizer(opt1, opt2, shape, dtype, w_stype='default', g_stype='default',
                      rtol=1e-4, atol=1e-5, compare_states=True):
    """Compare opt1 and opt2."""
    if not isinstance(shape, list):
        if w_stype == 'default':
            w2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
            w1 = w2.copyto(default_context())
        elif w_stype == 'row_sparse' or w_stype == 'csr':
            w2 = rand_ndarray(shape, w_stype, density=1, dtype=dtype)
            w1 = w2.copyto(default_context()).tostype('default')
        else:
            raise Exception("type not supported yet")
        if g_stype == 'default':
            g2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
            g1 = g2.copyto(default_context())
        elif g_stype == 'row_sparse' or g_stype == 'csr':
            g2 = rand_ndarray(shape, g_stype, dtype=dtype)
            g1 = g2.copyto(default_context()).tostype('default')
        else:
            raise Exception("type not supported yet")

        state1 = opt1.create_state_multi_precision(0, w1)
        state2 = opt2.create_state_multi_precision(0, w2)
        if compare_states:
            compare_ndarray_tuple(state1, state2)

        opt1.update_multi_precision(0, w1, g1, state1)
        opt2.update_multi_precision(0, w2, g2, state2)
        if compare_states:
            compare_ndarray_tuple(state1, state2, rtol=rtol, atol=atol)
        assert_almost_equal(w1.asnumpy(), w2.asnumpy(), rtol=rtol, atol=atol)
    else:
        # test multi-tensor: Opt1 single-tensor reference, Opt2 multi-tensor
        from copy import deepcopy
        ntensors = len(shape)
        w1, g1 = [], []
        for s in shape:
            w1.append(mx.random.uniform(shape=s, ctx=default_context(), dtype=dtype))
            g1.append(mx.random.uniform(shape=s, ctx=default_context(), dtype=dtype))
        w1 = tuple(w1)
        w2 = deepcopy(w1)
        g1 = tuple(g1)
        g2 = deepcopy(g1)
        state2 = [opt2.create_state_multi_precision(0, w2[i]) for i in range(ntensors)]
        opt2.update_multi_precision(list(range(ntensors)), w2, g2, state2)
        for i in range(ntensors):
            state1 = opt1.create_state_multi_precision(i, w1[i])
            opt1.update_multi_precision(i, w1[i], g1[i], state1)
            if compare_states:
                compare_ndarray_tuple(state1, state2[i], rtol, atol)
            assert_almost_equal(w1[i].asnumpy(), w2[i].asnumpy(), rtol=rtol, atol=atol)
コード例 #21
0
 def post_fail(waitall=False):
     caught = False
     try:
         a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             a.asnumpy()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown"
     b.asnumpy()
コード例 #22
0
 def post_fail(waitall=False):
     caught = False
     try:
         a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             a.asnumpy()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown"
     b.asnumpy()
コード例 #23
0
def run_training_iteration(data):
    output = net(data)

    net = gluon.nn.HybridSequential()
    net.add(gluon.nn.Dense(10))

    ctx = default_context()
    net.initialize(mx.init.Xavier(), ctx=ctx)
    data = mx.nd.ones((3, 4))
    mx.profiler.set_state("run")
    run_training_iteration(data)
    mx.nd.waitall()
    mx.profiler.set_state("stop")
コード例 #24
0
 def multiple_waits(waitall=False):
     # Test calling failed op followed by wait_to_read or waitall twice
     # Intention is to test rethrow for multiple wait_to_reads and waitalls
     # for vars with exceptions in same scope
     caught = False
     try:
         a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             a.wait_to_read()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown, exception should be rethrown with wait_to_read/waitall"
     try:
         b = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             b.wait_to_read()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown, exception should be rethrown with wait_to_read/waitall"
コード例 #25
0
 def multiple_waits(waitall=False):
     # Test calling failed op followed by wait_to_read or waitall twice
     # Intention is to test rethrow for multiple wait_to_reads and waitalls
     # for vars with exceptions in same scope
     caught = False
     try:
         a = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             a.wait_to_read()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown, exception should be rethrown with wait_to_read/waitall"
     try:
         b = mx.nd.random.normal(0, -1, (2, 2)).copyto(default_context())
         if waitall:
             mx.nd.waitall()
         else:
             b.wait_to_read()
     except MXNetError:
         caught = True
     assert caught, "No exception thrown, exception should be rethrown with wait_to_read/waitall"
コード例 #26
0
def test_exc_profiler():
    def run_training_iteration(data):
        output = net(data)

    net = gluon.nn.HybridSequential()
    with net.name_scope():
        net.add(gluon.nn.Dense(10))

    ctx = default_context()
    net.collect_params().initialize(mx.init.Xavier(), ctx=ctx)
    data = mx.nd.ones((3, 4))
    mx.profiler.set_state("run")
    run_training_iteration(data)
    mx.nd.waitall()
    mx.profiler.set_state("stop")
コード例 #27
0
def test_exc_profiler():
    def run_training_iteration(data):
        output = net(data)

    net = gluon.nn.HybridSequential()
    with net.name_scope():
        net.add(gluon.nn.Dense(10))

    ctx = default_context()
    net.collect_params().initialize(mx.init.Xavier(), ctx=ctx)
    data = mx.nd.ones((3, 4))
    mx.profiler.set_state("run")
    run_training_iteration(data)
    mx.nd.waitall()
    mx.profiler.set_state("stop")
コード例 #28
0
    def _get_symbolic_result(out_grads, n_steps):
        def _copy_args_dict(name_list):
            return {name: args[name].copy() for name in name_list}

        def _zeros_like_dict(name_list):
            return {name: mx.nd.zeros_like(args[name]) for name in name_list}

        free_syms = _create_vars(len(free_var_shapes), "FreeVar")
        loop_syms = _create_vars(len(loop_var_shapes), "LoopVar")
        outputs, final_loop_syms = mx.sym.contrib.while_loop(
            cond=lambda *_loop_vars: cond(_loop_vars, free_syms),
            func=lambda *_loop_vars: func(_loop_vars, free_syms),
            loop_vars=loop_syms,
            max_iterations=max_iterations,
        )
        if n_steps == 0:
            outputs = []
        else:
            outputs = [
                x.slice_axis(axis=0, begin=0, end=n_steps) for x in outputs
            ]
        loop_result_sym = [x * 2 for x in outputs
                           ] + [x * 3 for x in final_loop_syms]
        loop_result_sym = mx.sym.Group(loop_result_sym)

        loop_var_start = int(is_for)
        args_names = ["FreeVar" + str(i) for i, _ in enumerate(free_var_shapes)] \
                   + ["LoopVar" + str(i) for i, _ in enumerate(loop_var_shapes) if i >= loop_var_start]
        args_grad = None if not is_train else _zeros_like_dict(
            x for x in args_names)
        executor = loop_result_sym.bind(
            ctx=default_context(),
            args=_copy_args_dict(loop_result_sym.list_inputs()),
            args_grad=args_grad,
        )
        loop_result_nd = executor.forward(is_train=is_train)
        grads = []
        if is_train:
            executor.backward(out_grads=out_grads)
            grads = [executor.grad_dict.get("FreeVar" + str(i), None) for i, _ in enumerate(free_var_shapes)] \
                  + [executor.grad_dict.get("LoopVar" + str(i), None) for i, _ in enumerate(loop_var_shapes) if i >= loop_var_start]
        return _to_numpy_list(loop_result_nd), _to_numpy_list(grads)
コード例 #29
0
ファイル: test_kvstore_gpu.py プロジェクト: jonasrla/mxnet
    def check_row_sparse_pull(kv, count, ctx=default_context()):
        num_rows = shape[0]
        vals = []
        row_ids = []
        all_row_ids = np.arange(num_rows)
        for i in range(count):
            vals.append(mx.nd.zeros(shape, ctx=ctx).tostype('row_sparse'))
            row_id = np.random.randint(num_rows, size=num_rows)
            row_ids.append(mx.nd.array(row_id, dtype='int64'))
        row_ids_to_pull = row_ids[0] if len(row_ids) == 1 else row_ids
        vals_to_pull = vals[0] if len(vals) == 1 else vals

        kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull)
        for val, row_id in zip(vals, row_ids):
            retained = val.asnumpy()
            excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy())
            for row in range(num_rows):
                expected_val = np.zeros_like(retained[row])
                expected_val += 0 if row in excluded_row_ids else 1
                assert_almost_equal(retained[row], expected_val)
コード例 #30
0
    def check_row_sparse_pull(kv, count, ctx=default_context()):
        num_rows = shape[0]
        vals = []
        row_ids = []
        all_row_ids = np.arange(num_rows)
        for i in range(count):
            vals.append(mx.nd.zeros(shape, ctx=ctx).tostype('row_sparse'))
            row_id = np.random.randint(num_rows, size=num_rows)
            row_ids.append(mx.nd.array(row_id, dtype='int64'))
        row_ids_to_pull = row_ids[0] if len(row_ids) == 1 else row_ids
        vals_to_pull = vals[0] if len(vals) == 1 else vals

        kv.row_sparse_pull('e', out=vals_to_pull, row_ids=row_ids_to_pull)
        for val, row_id in zip(vals, row_ids):
            retained = val.asnumpy()
            excluded_row_ids = np.setdiff1d(all_row_ids, row_id.asnumpy())
            for row in range(num_rows):
                expected_val = np.zeros_like(retained[row])
                expected_val += 0 if row in excluded_row_ids else 1
                assert_almost_equal(retained[row], expected_val)
コード例 #31
0
 def _get_sym_result(is_train, args, args_grad, out_grad):
     args = {k: v.copy() for k, v in args.items()}
     args_grad = {k: v.copy() for k, v in args_grad.items()}
     i, j, x_sum, sc = [
         mx.sym.var("i"),
         mx.sym.var("j"),
         mx.sym.var("x_sum"),
         mx.sym.var("sc"),
     ]
     result_sym = mx.sym.Group(make_loop(i, j, x_sum, sc))
     executor = result_sym.bind(
         ctx=default_context(),
         args=args,
         args_grad=args_grad,
     )
     results = executor.forward(is_train=is_train)
     if not is_train:
         return _to_np_list(results), []
     executor.backward(out_grads=out_grad)
     grads = [executor.grad_dict["x_sum"], executor.grad_dict["sc"]]
     return _to_np_list(results), _to_np_list(grads)
コード例 #32
0
def compare_optimizer(opt1,
                      opt2,
                      shape,
                      dtype,
                      w_stype='default',
                      g_stype='default',
                      rtol=1e-4,
                      atol=1e-5,
                      compare_states=True):
    """Compare opt1 and opt2."""
    if w_stype == 'default':
        w2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
        w1 = w2.copyto(default_context())
    elif w_stype == 'row_sparse' or w_stype == 'csr':
        w2 = rand_ndarray(shape, w_stype, density=1, dtype=dtype)
        w1 = w2.copyto(default_context()).tostype('default')
    else:
        raise Exception("type not supported yet")
    if g_stype == 'default':
        g2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
        g1 = g2.copyto(default_context())
    elif g_stype == 'row_sparse' or g_stype == 'csr':
        g2 = rand_ndarray(shape, g_stype, dtype=dtype)
        g1 = g2.copyto(default_context()).tostype('default')
    else:
        raise Exception("type not supported yet")

    state1 = opt1.create_state_multi_precision(0, w1)
    state2 = opt2.create_state_multi_precision(0, w2)
    if compare_states:
        compare_ndarray_tuple(state1, state2)

    opt1.update_multi_precision(0, w1, g1, state1)
    opt2.update_multi_precision(0, w2, g2, state2)
    if compare_states:
        compare_ndarray_tuple(state1, state2, rtol=rtol, atol=atol)
    assert_almost_equal(w1.asnumpy(), w2.asnumpy(), rtol=rtol, atol=atol)
コード例 #33
0
 def mutable_var_check():
     a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
     a = mx.nd.dot(a, a)
     a.asnumpy()
コード例 #34
0
def check_unroll(cell_type, num_states, layout):
    batch_size = 20
    input_size = 50
    hidden_size = 30
    seq_len = 10
    if layout == 'TNC':
        rnn_data = mx.nd.normal(loc=0, scale=1, shape=(seq_len, batch_size, input_size))
    elif layout == 'NTC':
        rnn_data = mx.nd.normal(loc=0, scale=1, shape=(batch_size, seq_len, input_size))
    else:
        print("Wrong layout")
        return
    valid_length = mx.nd.round(mx.nd.random.uniform(low=1, high=10, shape=(batch_size)))
    state_shape = (batch_size, hidden_size)
    states = [mx.nd.normal(loc=0, scale=1, shape=state_shape) for i in range(num_states)]

    cell = cell_type(hidden_size, prefix='rnn_')
    cell.initialize(ctx=default_context())
    if layout == 'TNC':
        cell(rnn_data[0], states)
    else:
        cell(rnn_data[:,0,:], states)
    params1 = cell.collect_params()
    orig_params1 = copy.deepcopy(params1)

    trainer = gluon.Trainer(params1, 'sgd', {'learning_rate' : 0.03})
    with mx.autograd.record():
        res1, states1 = cell.unroll(seq_len, rnn_data, states, valid_length=valid_length,
                                    layout=layout, merge_outputs=True)
    res1.backward()
    trainer.step(batch_size)

    configs = [
            lambda layer: None,
            lambda layer: layer.hybridize(),
            lambda layer: layer.hybridize({'inline_limit': 0}),
            lambda layer: layer.hybridize({'static_alloc': True}),
            lambda layer: layer.hybridize({'static_alloc': True, 'static_shape': True}) ]
    # We can't pass None to a hybrid block, but it accepts an empty list.
    # so we use an empty list to represent valid_length if it's None.
    if valid_length is None:
        valid_length = []
    for config in configs:
        layer = TestRNNLayer(cell_type, hidden_size, layout)
        layer.initialize(ctx=default_context())
        config(layer)
        res2, states2 = layer(rnn_data, states, valid_length)
        params2 = layer.collect_params()
        for key, val in orig_params1.items():
            params2[key].set_data(copy.deepcopy(val.data()))

        trainer = gluon.Trainer(params2, 'sgd', {'learning_rate' : 0.03})
        with mx.autograd.record():
            res2, states2 = layer(rnn_data, states, valid_length)
        assert_almost_equal(res1.asnumpy(), res2.asnumpy(), rtol=0.001, atol=0.0001)
        assert len(states1) == len(states2)
        for i in range(len(states1)):
            assert_almost_equal(states1[i].asnumpy(), states2[i].asnumpy(),
                                rtol=0.001, atol=0.0001)
        res2.backward()
        trainer.step(batch_size)

        for key, val in params1.items():
            weight1 = val.data()
            weight2 = params2[key].data()
            assert_almost_equal(weight1.asnumpy(), weight2.asnumpy(),
                    rtol=0.001, atol=0.0001)
コード例 #35
0
                        atol=1e-3)

    # with propogating shapes/types
    mysym3 = sym.optimize_for("myProp", arg_array)
    exe3 = mysym3.bind(ctx=mx.cpu(), args=args)
    out3 = exe3.forward()
    # check that result matches one executed by MXNet
    assert_almost_equal(out[0].asnumpy(),
                        out3[0].asnumpy(),
                        rtol=1e-3,
                        atol=1e-3)


@unittest.skipIf(check_platform(), "not all machine types supported")
@unittest.skipIf(is_cd_run(), "continuous delivery run - ignoring test")
@unittest.skipIf(default_context().device_type == 'cpu',
                 "ignoring custom_op_gpu test on cpu run")
def test_custom_op_gpu():
    # possible places to find library file
    if (os.name == 'posix'):
        lib = 'libcustomop_gpu_lib.so'
        if os.path.exists(lib):
            fname = lib
        elif os.path.exists('build/' + lib):
            fname = 'build/' + lib
        else:
            raise MXNetError("library %s not found " % lib)
    elif (os.name == 'nt'):
        lib = 'libcustomop_gpu_lib.dll'
        if os.path.exists('windows_package\\lib\\' + lib):
            fname = 'windows_package\\lib\\' + lib
コード例 #36
0
def test_order(ctx=default_context()):
    def gt_topk(dat, axis, ret_typ, k, is_ascend):
        if ret_typ == "indices":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
        elif ret_typ == "value":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(np.sort(dat, axis=axis), axis=axis, indices=indices, mode='wrap')
        else:
            assert dat.shape == (5, 5, 5, 5)
            assert axis is None or axis ==1
            ret = np.zeros(dat.shape)
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            gt_argsort = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
            if axis is None:
                ret.ravel()[gt_argsort] = 1
            else:
                for i in range(5):
                    for j in range(5):
                        for k in range(5):
                            ret[i, gt_argsort[i, :, j, k], j, k] = 1
        return ret
    a_npy = np.random.normal(size=(5, 5, 5, 5))
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=indices
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="indices", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="indices", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="indices", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="value", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="value", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="value", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=mask
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="mask", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="mask", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=both
    nd_ret_topk_val, nd_ret_topk_ind = mx.nd.topk(a_nd, axis=1, ret_typ="both", k=3, is_ascend=True)
    nd_ret_topk_val = nd_ret_topk_val.asnumpy()
    nd_ret_topk_ind = nd_ret_topk_ind.asnumpy()
    gt_val = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    gt_ind = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk_val, gt_val)
    assert_almost_equal(nd_ret_topk_ind, gt_ind)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=5, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=5*5*5*5, is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)

    # test for argsort
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=5, is_ascend=True)
    assert_almost_equal(nd_ret_argsort, gt)
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=5*5*5*5, is_ascend=False)
    assert_almost_equal(nd_ret_argsort, gt)

    # test topk with a big shape
    a = mx.nd.arange(0, 54686454, step=1, repeat=1)
    assert_almost_equal(a.topk(k=54686454).asnumpy(), a.asnumpy()[::-1])
コード例 #37
0
def test_while_loop_rnn():
    def _array(shape):
        return mx.nd.random.uniform(-1.0, 1.0, shape=shape)

    cell_types = [mx.rnn.LSTMCell]
    num_params = [2]

    batch_size = 2
    hidden_dim = 3
    input_dim = 4
    seq_len = 3

    for cell, n_param in zip(cell_types, num_params):
        # using while_loop
        params = mx.rnn.RNNParams()
        data = mx.sym.var("data")
        iter_i = mx.sym.var("i")

        def _cond(*states):
            i = states[0]
            return i < seq_len

        def _func(*states):
            i = states[0]
            states = states[1:]
            in_ = data.take(i).squeeze(axis=0)
            rnn = cell(hidden_dim, prefix='', params=params)
            next_hidden, next_states = rnn(in_, states)
            return [next_hidden], [i + 1] + list(next_states)

        states = [mx.sym.var("s_" + str(i)) for i in range(n_param)]
        result = mx.sym.contrib.while_loop(cond=_cond,
                                           func=_func,
                                           loop_vars=[iter_i] + states,
                                           max_iterations=seq_len)
        result = mx.sym.Group(result[0] + result[1][1:])
        arg_shapes, _, _ = result.infer_shape(
            data=(seq_len, batch_size, input_dim),
            s_0=(batch_size, hidden_dim),
        )
        rnn_inputs = result.list_inputs()
        args = {
            name: _array(arg_shapes[i])
            for i, name in enumerate(rnn_inputs) if name != "i"
        }
        args["i"] = mx.nd.zeros([1])
        args_grad = {
            name: _array(arg_shapes[i])
            for i, name in enumerate(rnn_inputs)
        }
        e_1 = result.bind(
            ctx=default_context(),
            args={name: array.copy()
                  for name, array in args.items()},
            args_grad={
                name: array.copy()
                for name, array in args_grad.items() if name != "i"
            },
        )
        # using unrolled rnn
        rnn = cell(hidden_dim, prefix='')
        unroll_outs = []
        for inputs in mx.sym.split(data,
                                   num_outputs=seq_len,
                                   axis=0,
                                   squeeze_axis=True):
            h, states = rnn(inputs, states)
            unroll_outs.append(mx.sym.expand_dims(h, axis=0))
        unroll_outs = _as_list(mx.sym.concat(*unroll_outs, dim=0))
        unroll_outs.extend(states)
        result = mx.sym.Group(unroll_outs)
        e_2 = result.bind(
            ctx=default_context(),
            args={
                name: array.copy()
                for name, array in args.items() if name != "i"
            },
            args_grad={
                name: array.copy()
                for name, array in args_grad.items() if name != "i"
            },
        )
        for case_id in range(100):
            out_grads = [_array(arr.shape) for arr in e_1.outputs]
            args = {name: array.copy() for name, array in args.items()}
            e_1.forward(is_train=True, **args)
            e_1.backward(out_grads)
            args = {
                name: array.copy()
                for name, array in args.items() if name != "i"
            }
            e_2.forward(is_train=True, **args)
            e_2.backward(out_grads)
            assert len(e_1.outputs) == len(e_2.outputs)
            for x, y in zip(e_1.outputs, e_2.outputs):
                x = x.asnumpy()
                y = y.asnumpy()
                assert_almost_equal(x, y, rtol=1e-4, atol=1e-4)
            grad_keys = list(e_2.grad_dict.keys())
            e_1_grad = [e_1.grad_dict[x] for x in grad_keys]
            e_2_grad = [e_2.grad_dict[x] for x in grad_keys]
            for x, y in zip(e_1_grad, e_2_grad):
                x = x.asnumpy()
                y = y.asnumpy()
                assert_almost_equal(x, y, rtol=1e-4, atol=1e-4)
コード例 #38
0
def test_order():
    ctx = default_context()
    dat_size = 5
    def gt_topk(dat, axis, ret_typ, k, is_ascend):
        if ret_typ == "indices":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
        elif ret_typ == "value":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(np.sort(dat, axis=axis), axis=axis, indices=indices, mode='wrap')
        else:
            assert dat.shape == (dat_size, dat_size, dat_size, dat_size)
            assert axis is None or axis ==1
            ret = np.zeros(dat.shape)
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            gt_argsort = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
            if axis is None:
                ret.ravel()[gt_argsort] = 1
            else:
                for i in range(dat_size):
                    for j in range(dat_size):
                        for k in range(dat_size):
                            ret[i, gt_argsort[i, :, j, k], j, k] = 1
        return ret

    # Produce input data for the tests, including ensuring unique values if desired.
    # Numpy's argsort does not consistently return lowest-index-first for matching
    # values, making it hard to generate a numpy 'golden copy' to compare against
    # the mxnet operator.  The 'mask' function is particularly hard to test given that
    # equal values might span the 'k' boundary.  Issue exposed with seed 1405838964.
    def get_values(ensure_unique):
        while True:
            data = np.float32(np.random.normal(size=(dat_size, dat_size, dat_size, dat_size)))
            if not ensure_unique:
                return data
            num_unique_values = len(set(data.flatten()))
            if data.size == num_unique_values:
                return data

    a_npy = get_values(ensure_unique=True)
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=indices
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="indices", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="indices", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="indices", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="value", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="value", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="value", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=mask
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="mask", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="mask", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=both
    nd_ret_topk_val, nd_ret_topk_ind = mx.nd.topk(a_nd, axis=1, ret_typ="both", k=3, is_ascend=True)
    nd_ret_topk_val = nd_ret_topk_val.asnumpy()
    nd_ret_topk_ind = nd_ret_topk_ind.asnumpy()
    gt_val = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    gt_ind = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk_val, gt_val)
    assert_almost_equal(nd_ret_topk_ind, gt_ind)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value",
                 k=dat_size*dat_size*dat_size*dat_size, is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)

    # test for argsort
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_argsort, gt)
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices",
                 k=dat_size*dat_size*dat_size*dat_size, is_ascend=False)
    assert_almost_equal(nd_ret_argsort, gt)

    # test topk with a big shape
    a = mx.nd.arange(0, 54686454, step=1, repeat=1)
    assert_almost_equal(a.topk(k=54686454).asnumpy(), a.asnumpy()[::-1])

    # Repeat those tests that don't involve indices.  These should pass even with
    # duplicated input data values (over many repeated runs with different random seeds,
    # this will be tested).
    a_npy = get_values(ensure_unique=False)
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="value", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="value", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="value", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value",
                 k=dat_size*dat_size*dat_size*dat_size, is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)
コード例 #39
0
def test_unroll(cell_type, num_states, layout):
    class RNNLayer(gluon.HybridBlock):
        def __init__(self, cell_type, hidden_size, layout):
            super(RNNLayer, self).__init__()
            self.cell = cell_type(hidden_size)
            self.layout = layout

        def forward(self, inputs, states, valid_length):
            if isinstance(valid_length, list) and len(valid_length) == 0:
                valid_length = None
            return gluon.rnn.rnn_cell.dynamic_unroll(self.cell, inputs, states,
                                                     valid_length=valid_length,
                                                     layout=self.layout)
        
        def infer_shape(self, x, *args):
            self.cell.infer_shape(0, x, False)

    batch_size = 20
    input_size = 50
    hidden_size = 30
    seq_len = 10
    ctx = default_context()
    if layout == 'TNC':
        rnn_data = mx.np.random.normal(loc=0, scale=1, size=(seq_len, batch_size, input_size), ctx=ctx)
    elif layout == 'NTC':
        rnn_data = mx.np.random.normal(loc=0, scale=1, size=(batch_size, seq_len, input_size), ctx=ctx)
    else:
        print("Wrong layout")
        return
    valid_length = mx.np.round(mx.np.random.uniform(low=1, high=10, size=(batch_size), ctx=ctx))
    state_shape = (batch_size, hidden_size)
    states = [mx.np.random.normal(loc=0, scale=1, size=state_shape, ctx=ctx) for i in range(num_states)]

    cell = cell_type(hidden_size)
    if layout == 'TNC':
        cell.infer_shape(0, rnn_data[0], False)
        cell.initialize(ctx=default_context())
        cell(rnn_data[0], states)
    else:
        cell.infer_shape(0, rnn_data[:,0,:], False)
        cell.initialize(ctx=default_context())
        cell(rnn_data[:,0,:], states)
    params1 = cell.collect_params()
    orig_params1 = copy.deepcopy(params1)

    trainer = gluon.Trainer(params1, 'sgd', {'learning_rate' : 0.03})
    with mx.autograd.record():
        res1, states1 = cell.unroll(seq_len, rnn_data, states, valid_length=valid_length,
                                    layout=layout, merge_outputs=True)
    res1.backward()
    trainer.step(batch_size)

    configs = [
            lambda layer: None,
            lambda layer: layer.hybridize(),
            lambda layer: layer.hybridize({'inline_limit': 0}),
            lambda layer: layer.hybridize({'static_alloc': True}),
            lambda layer: layer.hybridize({'static_alloc': True, 'static_shape': True}) ]
    # We can't pass None to a hybrid block, but it accepts an empty list.
    # so we use an empty list to represent valid_length if it's None.
    if valid_length is None:
        valid_length = []
    for config in configs:
        layer = RNNLayer(cell_type, hidden_size, layout)
        layer.infer_shape(rnn_data)
        layer.initialize(ctx=default_context())
        config(layer)
        res2, states2 = layer(rnn_data, states, valid_length)
        params2 = layer.collect_params()
        for key, val in orig_params1.items():
            params2['cell.' + key].set_data(copy.deepcopy(val.data()))

        trainer = gluon.Trainer(params2, 'sgd', {'learning_rate' : 0.03})
        with mx.autograd.record():
            res2, states2 = layer(rnn_data, states, valid_length)
        assert_almost_equal(res1, res2, rtol=0.001, atol=0.0001)
        assert len(states1) == len(states2)
        for i in range(len(states1)):
            assert_almost_equal(states1[i], states2[i], rtol=0.001, atol=0.0001)
        res2.backward()
        trainer.step(batch_size)

        for key, val in params1.items():
            weight1 = val.data()
            weight2 = params2['cell.' + key].data()
            # Subgraph created from npx.foreach in deferred compute is
            # little bit different from the legacy foreach operator. 
            assert_almost_equal(weight1, weight2, rtol=0.1, atol=0.1)
コード例 #40
0
ファイル: test_ndarray.py プロジェクト: pgplus1628/mxnet
def test_order(ctx=default_context()):
    def gt_topk(dat, axis, ret_typ, k, is_ascend):
        if ret_typ == "indices":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
        elif ret_typ == "value":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            ret = np.take(np.sort(dat, axis=axis), axis=axis, indices=indices, mode='wrap')
        else:
            assert dat.shape == (5, 5, 5, 5)
            assert axis is None or axis ==1
            ret = np.zeros(dat.shape)
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k-1, -1)
            gt_argsort = np.take(dat.argsort(axis=axis), axis=axis, indices=indices, mode='wrap')
            if axis is None:
                ret.ravel()[gt_argsort] = 1
            else:
                for i in range(5):
                    for j in range(5):
                        for k in range(5):
                            ret[i, gt_argsort[i, :, j, k], j, k] = 1
        return ret
    a_npy = np.random.normal(size=(5, 5, 5, 5))
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=indices
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="indices", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="indices", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="indices", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="value", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=3, ret_typ="value", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="value", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=mask
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=2, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd, axis=None, ret_typ="mask", k=21, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="mask", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=both
    nd_ret_topk_val, nd_ret_topk_ind = mx.nd.topk(a_nd, axis=1, ret_typ="both", k=3, is_ascend=True)
    nd_ret_topk_val = nd_ret_topk_val.asnumpy()
    nd_ret_topk_ind = nd_ret_topk_ind.asnumpy()
    gt_val = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    gt_ind = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk_val, gt_val)
    assert_almost_equal(nd_ret_topk_ind, gt_ind)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=5, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=5*5*5*5, is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)

    # test for argsort
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=5, is_ascend=True)
    assert_almost_equal(nd_ret_argsort, gt)
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=5*5*5*5, is_ascend=False)
    assert_almost_equal(nd_ret_argsort, gt)

    # test topk with a big shape
    a = mx.nd.arange(0, 54686454, step=1, repeat=1)
    assert_almost_equal(a.topk(k=54686454).asnumpy(), a.asnumpy()[::-1])
コード例 #41
0
def test_order():
    ctx = default_context()
    dat_size = 5

    def gt_topk(dat, axis, ret_typ, k, is_ascend):
        if ret_typ == "indices":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k - 1, -1)
            ret = np.take(dat.argsort(axis=axis),
                          axis=axis,
                          indices=indices,
                          mode='wrap')
        elif ret_typ == "value":
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k - 1, -1)
            ret = np.take(np.sort(dat, axis=axis),
                          axis=axis,
                          indices=indices,
                          mode='wrap')
        else:
            assert dat.shape == (dat_size, dat_size, dat_size, dat_size)
            assert axis is None or axis == 1
            ret = np.zeros(dat.shape)
            if is_ascend:
                indices = np.arange(k)
            else:
                indices = np.arange(-1, -k - 1, -1)
            gt_argsort = np.take(dat.argsort(axis=axis),
                                 axis=axis,
                                 indices=indices,
                                 mode='wrap')
            if axis is None:
                ret.ravel()[gt_argsort] = 1
            else:
                for i in range(dat_size):
                    for j in range(dat_size):
                        for k in range(dat_size):
                            ret[i, gt_argsort[i, :, j, k], j, k] = 1
        return ret

    # Produce input data for the tests, including ensuring unique values if desired.
    # Numpy's argsort does not consistently return lowest-index-first for matching
    # values, making it hard to generate a numpy 'golden copy' to compare against
    # the mxnet operator.  The 'mask' function is particularly hard to test given that
    # equal values might span the 'k' boundary.  Issue exposed with seed 1405838964.
    def get_values(ensure_unique):
        while True:
            data = np.float32(
                np.random.normal(size=(dat_size, dat_size, dat_size,
                                       dat_size)))
            if not ensure_unique:
                return data
            num_unique_values = len(set(data.flatten()))
            if data.size == num_unique_values:
                return data

    a_npy = get_values(ensure_unique=True)
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=indices
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=1,
                             ret_typ="indices",
                             k=3,
                             is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=3,
                             ret_typ="indices",
                             k=2,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=None,
                             ret_typ="indices",
                             k=21,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="indices", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=1,
                             ret_typ="value",
                             k=3,
                             is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=3,
                             ret_typ="value",
                             k=2,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=None,
                             ret_typ="value",
                             k=21,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=mask
    nd_ret_topk = mx.nd.topk(a_nd, axis=1, ret_typ="mask", k=3,
                             is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=1,
                             ret_typ="mask",
                             k=2,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="mask", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=None,
                             ret_typ="mask",
                             k=21,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="mask", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for ret_typ=both
    nd_ret_topk_val, nd_ret_topk_ind = mx.nd.topk(a_nd,
                                                  axis=1,
                                                  ret_typ="both",
                                                  k=3,
                                                  is_ascend=True)
    nd_ret_topk_val = nd_ret_topk_val.asnumpy()
    nd_ret_topk_ind = nd_ret_topk_ind.asnumpy()
    gt_val = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    gt_ind = gt_topk(a_npy, axis=1, ret_typ="indices", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk_val, gt_val)
    assert_almost_equal(nd_ret_topk_ind, gt_ind)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy,
                 axis=None,
                 ret_typ="value",
                 k=dat_size * dat_size * dat_size * dat_size,
                 is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)

    # test for argsort
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=3, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="indices", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_argsort, gt)
    nd_ret_argsort = mx.nd.argsort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy,
                 axis=None,
                 ret_typ="indices",
                 k=dat_size * dat_size * dat_size * dat_size,
                 is_ascend=False)
    assert_almost_equal(nd_ret_argsort, gt)

    # test topk with a big shape
    a = mx.nd.arange(0, 54686454, step=1, repeat=1)
    assert_almost_equal(a.topk(k=54686454).asnumpy(), a.asnumpy()[::-1])

    # Repeat those tests that don't involve indices.  These should pass even with
    # duplicated input data values (over many repeated runs with different random seeds,
    # this will be tested).
    a_npy = get_values(ensure_unique=False)
    a_nd = mx.nd.array(a_npy, ctx=ctx)

    # test for ret_typ=value
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=1,
                             ret_typ="value",
                             k=3,
                             is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=3, is_ascend=True)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=3,
                             ret_typ="value",
                             k=2,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=3, ret_typ="value", k=2, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)
    nd_ret_topk = mx.nd.topk(a_nd,
                             axis=None,
                             ret_typ="value",
                             k=21,
                             is_ascend=False).asnumpy()
    gt = gt_topk(a_npy, axis=None, ret_typ="value", k=21, is_ascend=False)
    assert_almost_equal(nd_ret_topk, gt)

    # test for sort
    nd_ret_sort = mx.nd.sort(a_nd, axis=1, is_ascend=True).asnumpy()
    gt = gt_topk(a_npy, axis=1, ret_typ="value", k=dat_size, is_ascend=True)
    assert_almost_equal(nd_ret_sort, gt)
    nd_ret_sort = mx.nd.sort(a_nd, axis=None, is_ascend=False).asnumpy()
    gt = gt_topk(a_npy,
                 axis=None,
                 ret_typ="value",
                 k=dat_size * dat_size * dat_size * dat_size,
                 is_ascend=False)
    assert_almost_equal(nd_ret_sort, gt)
コード例 #42
0
def check_unroll(cell_type, num_states, layout):
    batch_size = 20
    input_size = 50
    hidden_size = 30
    seq_len = 10
    if layout == 'TNC':
        rnn_data = mx.nd.normal(loc=0, scale=1, shape=(seq_len, batch_size, input_size))
    elif layout == 'NTC':
        rnn_data = mx.nd.normal(loc=0, scale=1, shape=(batch_size, seq_len, input_size))
    else:
        print("Wrong layout")
        return
    valid_length = mx.nd.round(mx.nd.random.uniform(low=1, high=10, shape=(batch_size)))
    state_shape = (batch_size, hidden_size)
    states = [mx.nd.normal(loc=0, scale=1, shape=state_shape) for i in range(num_states)]

    cell = cell_type(hidden_size, prefix='rnn_')
    cell.initialize(ctx=default_context())
    if layout == 'TNC':
        cell(rnn_data[0], states)
    else:
        cell(rnn_data[:,0,:], states)
    params1 = cell.collect_params()
    orig_params1 = copy.deepcopy(params1)

    trainer = gluon.Trainer(params1, 'sgd', {'learning_rate' : 0.03})
    with mx.autograd.record():
        res1, states1 = cell.unroll(seq_len, rnn_data, states, valid_length=valid_length,
                                    layout=layout, merge_outputs=True)
    res1.backward()
    trainer.step(batch_size)

    configs = [
            lambda layer: None,
            lambda layer: layer.hybridize(),
            lambda layer: layer.hybridize({'inline_limit': 0}),
            lambda layer: layer.hybridize({'static_alloc': True}),
            lambda layer: layer.hybridize({'static_alloc': True, 'static_shape': True}) ]
    # We can't pass None to a hybrid block, but it accepts an empty list.
    # so we use an empty list to represent valid_length if it's None.
    if valid_length is None:
        valid_length = []
    for config in configs:
        layer = RNNLayer(cell_type, hidden_size, layout)
        layer.initialize(ctx=default_context())
        config(layer)
        res2, states2 = layer(rnn_data, states, valid_length)
        params2 = layer.collect_params()
        for key, val in orig_params1.items():
            params2[key].set_data(copy.deepcopy(val.data()))

        trainer = gluon.Trainer(params2, 'sgd', {'learning_rate' : 0.03})
        with mx.autograd.record():
            res2, states2 = layer(rnn_data, states, valid_length)
        assert_almost_equal(res1, res2, rtol=0.001, atol=0.0001)
        assert len(states1) == len(states2)
        for i in range(len(states1)):
            assert_almost_equal(states1[i], states2[i], rtol=0.001, atol=0.0001)
        res2.backward()
        trainer.step(batch_size)

        for key, val in params1.items():
            weight1 = val.data()
            weight2 = params2[key].data()
            assert_almost_equal(weight1, weight2, rtol=0.001, atol=0.0001)
コード例 #43
0
 def mutable_var_check():
     a, b = mx.nd.random_normal(0, -1, (2, 2)).copyto(default_context())
     a = mx.nd.dot(a, a)
     a.asnumpy()