コード例 #1
0
    def check_binary_op_result(shape1, shape2, op, dtype=None):
        if shape1 is None:
            mx_input1 = abs(_np.random.uniform()) + 1
            np_input1 = mx_input1
        else:
            mx_input1 = rand_ndarray(shape1, dtype=dtype).abs() + 1
            np_input1 = mx_input1.asnumpy()
        if shape2 is None:
            mx_input2 = abs(_np.random.uniform()) + 1
            np_input2 = mx_input2
        else:
            mx_input2 = rand_ndarray(shape2, dtype=dtype).abs() + 1
            np_input2 = mx_input2.asnumpy()

        scalar = None
        reverse = False
        if isinstance(mx_input1, mx.nd.NDArray) and not isinstance(
                mx_input2, mx.nd.NDArray):
            scalar = mx_input2
            reverse = False
        elif isinstance(mx_input2, mx.nd.NDArray) and not isinstance(
                mx_input1, mx.nd.NDArray):
            scalar = mx_input1
            reverse = True

        np_out = get_np_ret(np_input1, np_input2, op)
        for hybridize in [True, False]:
            if scalar is None:
                get_mx_ret_np = TestBinaryElementWiseOp(op)
                get_mx_ret_classic = TestBinaryElementWiseOp(op)
                if hybridize:
                    get_mx_ret_np.hybridize()
                    get_mx_ret_classic.hybridize()
                mx_out = get_mx_ret_np(mx_input1.as_np_ndarray(),
                                       mx_input2.as_np_ndarray())
                assert type(mx_out) == np.ndarray
                assert np_out.shape == mx_out.shape
                assert_almost_equal(mx_out.asnumpy(),
                                    np_out,
                                    atol=1e-6,
                                    rtol=1e-5)
            else:
                get_mx_ret = TestBinaryElementWiseOp(op,
                                                     scalar=scalar,
                                                     reverse=reverse)
                if hybridize:
                    get_mx_ret.hybridize()
                if reverse:
                    mx_out = get_mx_ret(mx_input2.as_np_ndarray())
                    assert type(mx_out) == np.ndarray
                else:
                    mx_out = get_mx_ret(mx_input1.as_np_ndarray())
                    assert type(mx_out) == np.ndarray
                assert np_out.shape == mx_out.shape
                assert_almost_equal(mx_out.asnumpy(),
                                    np_out,
                                    atol=1e-6,
                                    rtol=1e-5)
コード例 #2
0
ファイル: test_mkldnn.py プロジェクト: MarkMa1990/mxnet
 def check_elemwise_add_training(stype):
     data_shape = rand_shape_nd(4)
     for density in [1.0, 0.5, 0.0]:
         a_sym = mx.sym.Variable('a')
         b_sym = mx.sym.Variable('b')
         sym = mx.sym.elemwise_add(a_sym, b_sym)
         a = rand_ndarray(shape=data_shape, stype=stype, density=density)
         b = rand_ndarray(shape=data_shape, stype=stype, density=density)
         in_location = [a, b]
         check_numeric_gradient(sym, in_location, numeric_eps=1e-3, rtol=1e-3, atol=5e-3)
コード例 #3
0
def test_np_dot():
    shapes = [
        ((3, 0), (0, 4)),
        ((3, ), (3, )),  # Case 1
        ((3, 4), (4, 5)),  # Case 2
        ((), ()),  # Case 3
        ((3, 4, 5), ()),  # Case 3.5.1
        ((), (3, 4, 5)),  # Case 3.5.2
        ((3, 4, 5), (5, )),  # Case 4
        ((3, 4, 5), (5, 2)),  # Case 5
        ((5, ), (5, 2)),
        ((3, 5, 4), (5, 4, 3)),
        ((3, 4), (5, 4, 3)),
        ((4, ), (5, 4, 3))
    ]

    eps = 1e-3

    for shape_a, shape_b in shapes:
        np_a = _np.random.uniform(-1.0, 1.0, shape_a)
        np_a[abs(np_a) < eps] = 2 * eps
        np_b = _np.random.uniform(-1.0, 1.0, shape_b)
        np_b[abs(np_b) < eps] = 2 * eps
        a = mx.nd.array(np_a)
        b = mx.nd.array(np_b)
        np_res = _np.dot(np_a, np_b)
        mx_res = np.dot(a.as_np_ndarray(), b.as_np_ndarray())
        assert mx_res.shape == np_res.shape
        assert_almost_equal(np_res, mx_res.asnumpy(), rtol=1e-5, atol=1e-5)
        mx_a = mx.sym.Variable("a")
        mx_b = mx.sym.Variable("b")
        mx_sym = mx.sym.np.dot(mx_a.as_np_ndarray(),
                               mx_b.as_np_ndarray()).as_nd_ndarray()
        if (len(shape_a) > 0 and len(shape_b) > 0 and _np.prod(shape_a) > 0
                and _np.prod(shape_b) > 0):
            check_numeric_gradient(mx_sym, {
                "a": a,
                "b": b
            },
                                   numeric_eps=eps,
                                   rtol=1e-2,
                                   atol=1e-3)

    bad_shapes = [((4, 5), (2, 3)), ((3, 4, 5), (6, ))]

    for shape_a, shape_b in bad_shapes:
        a = mx.nd.array(
            random.random()) if len(shape_a) == 0 else rand_ndarray(shape_a)
        b = mx.nd.array(
            random.random()) if len(shape_b) == 0 else rand_ndarray(shape_b)
        try:
            mx_res = np.dot(a.as_np_ndarray(), b.as_np_ndarray())
        except mx.base.MXNetError:
            continue
        assert False
コード例 #4
0
ファイル: dot.py プロジェクト: CoderHHX/incubator-mxnet
    def bench_dot(lhs_shape, rhs_shape, lhs_stype, rhs_stype,
                  lhs_den, rhs_den, trans_lhs, ctx, num_repeat=10, fw="mxnet", distribution="uniform"):
        set_default_context(ctx)
        assert fw == "mxnet" or fw == "scipy"
        # Set funcs
        dot_func_sparse = mx.nd.sparse.dot if fw == "mxnet" else sp.spmatrix.dot
        dot_func_dense = mx.nd.dot if fw == "mxnet" else np.dot
        # Create matrix instances
        lhs_nd = rand_ndarray(lhs_shape, lhs_stype, density=lhs_den, distribution=distribution)
        # only uniform distribution supported for rhs
        if rhs_stype == 'csr':
            rhs_nd = rand_ndarray(rhs_shape, rhs_stype, density=rhs_den, distribution=distribution)
        else:
            rhs_nd = rand_ndarray(rhs_shape, rhs_stype, density=rhs_den, distribution="uniform")
        lhs_dns = None
        rhs_dns = None
        dense_cost = None
        sparse_cost = None

        if fw == "mxnet":
            lhs_dns = lhs_nd if lhs_stype == 'default' else lhs_nd.tostype('default')
            rhs_dns = rhs_nd if rhs_stype == 'default' else rhs_nd.tostype('default')
            # One warm up run, verify correctness
            out = dot_func_sparse(lhs_nd, rhs_dns, trans_lhs)
            out_expected = dot_func_dense(lhs_dns, rhs_dns, trans_lhs)
            assert_almost_equal(out.asnumpy(), out_expected.asnumpy(), rtol=1e-1, atol=1e-1)
            sparse_cost = measure_cost(num_repeat, False, False, dot_func_sparse, lhs_nd, rhs_nd, trans_lhs)
            dense_cost = measure_cost(num_repeat, False, False, dot_func_dense, lhs_dns, rhs_dns, trans_lhs)
        else:
            lhs_dns = lhs_nd.asnumpy()
            rhs_dns = rhs_nd.asnumpy()
            lhs_nd = sp.csr_matrix(lhs_nd.asnumpy())
            rhs_nd = rhs_nd.asnumpy()
            # One warm up run, verify correctness
            lhs_nd_copy = sp.spmatrix.transpose(lhs_nd) if trans_lhs else lhs_nd
            out = dot_func_sparse(lhs_nd_copy, rhs_dns)
            sparse_cost = measure_cost(num_repeat, trans_lhs, False, dot_func_sparse, lhs_nd, rhs_nd)
            dense_cost = measure_cost(num_repeat, trans_lhs, True, dot_func_dense, lhs_dns, rhs_dns)

        speedup = dense_cost / sparse_cost
        # Print results
        m = lhs_shape[0]
        k = lhs_shape[1]
        n = rhs_shape[1]
        result_pattern = '{:15.1f} {:15.1f} {:>10} {:8d} {:8d} {:8d} {:13.2f} {:13.2f} {:8.2f}'
        results = result_pattern.format(lhs_den*100,
                                        rhs_den*100,
                                        str(ctx),
                                        m,
                                        k,
                                        n,
                                        sparse_cost*1000,
                                        dense_cost*1000,
                                        speedup)
        print(results)
コード例 #5
0
def bench_dot(lhs_row_dim, lhs_col_dim, rhs_col_dim, density,
              rhs_density, dot_func, trans_lhs, lhs_stype,
              rhs_stype, only_storage, distribution="uniform"):
    """ Benchmarking both storage and dot
    """
    lhs_nd = rand_ndarray((lhs_row_dim, lhs_col_dim), lhs_stype, density, distribution=distribution)
    if not only_storage:
        rhs_nd = rand_ndarray((lhs_col_dim, rhs_col_dim), rhs_stype,
                              density=rhs_density, distribution=distribution)
        out = dot_func(lhs_nd, rhs_nd, trans_lhs)
    mx.nd.waitall()
コード例 #6
0
ファイル: test_mkldnn.py プロジェクト: junrushao1994/mxnet
 def check_fullyconnected_training(stype):
     data_shape = rand_shape_nd(2)
     weight_shape = rand_shape_nd(2)
     weight_shape = (weight_shape[0], data_shape[1])
     for density in [1.0, 0.5, 0.0]:
         x = rand_ndarray(shape=data_shape, stype=stype, density=density)
         w = rand_ndarray(shape=weight_shape, stype=stype, density=density)
         x_sym = mx.sym.Variable("data")
         w_sym = mx.sym.Variable("weight")
         sym = mx.sym.FullyConnected(data=x_sym, weight=w_sym, num_hidden=weight_shape[0], no_bias=True)
         in_location = [x, w]
         check_numeric_gradient(sym, in_location, numeric_eps=1e-3, rtol=1e-3, atol=5e-3)
コード例 #7
0
ファイル: test_mkldnn.py プロジェクト: dpom/incubator-mxnet
 def check_fullyconnected_training(stype):
     data_shape = rand_shape_nd(2)
     weight_shape = rand_shape_nd(2)
     weight_shape = (weight_shape[0], data_shape[1])
     for density in [1.0, 0.5, 0.0]:
         x = rand_ndarray(shape=data_shape, stype=stype, density=density)
         w = rand_ndarray(shape=weight_shape, stype=stype, density=density)
         x_sym = mx.sym.Variable("data")
         w_sym = mx.sym.Variable("weight")
         sym = mx.sym.FullyConnected(data=x_sym, weight=w_sym, num_hidden=weight_shape[0], no_bias=True)
         in_location = [x, w]
         check_numeric_gradient(sym, in_location, numeric_eps=1e-3, rtol=1e-3, atol=5e-3)
コード例 #8
0
ファイル: dot.py プロジェクト: stefanhenneking/mxnet
    def bench_dot(lhs_shape, rhs_shape, lhs_stype, rhs_stype,
                  lhs_den, rhs_den, trans_lhs, ctx, num_repeat=10, fw="mxnet", distribution="uniform"):
        set_default_context(ctx)
        assert fw == "mxnet" or fw == "scipy"
        # Set funcs
        dot_func_sparse = mx.nd.dot if fw == "mxnet" else sp.spmatrix.dot
        dot_func_dense = mx.nd.dot if fw == "mxnet" else np.dot
        # Create matrix instances
        lhs_nd = rand_ndarray(lhs_shape, lhs_stype, density=lhs_den, distribution=distribution)
        # only uniform distribution supported for rhs
        rhs_nd = rand_ndarray(rhs_shape, rhs_stype, density=rhs_den, distribution="uniform")
        lhs_dns = None
        rhs_dns = None
        dense_cost = None
        sparse_cost = None

        if fw == "mxnet":
            lhs_dns = lhs_nd if lhs_stype == 'default' else lhs_nd.tostype('default')
            rhs_dns = rhs_nd if rhs_stype == 'default' else rhs_nd.tostype('default')
            # One warm up run, verify correctness
            out = dot_func_sparse(lhs_nd, rhs_dns, trans_lhs)
            out_expected = dot_func_dense(lhs_dns, rhs_dns, trans_lhs)
            assert_almost_equal(out.asnumpy(), out_expected.asnumpy(), rtol=1e-1, atol=1e-1)
            sparse_cost = measure_cost(num_repeat, False, False, dot_func_sparse, lhs_nd, rhs_nd, trans_lhs)
            dense_cost = measure_cost(num_repeat, False, False, dot_func_dense, lhs_dns, rhs_dns, trans_lhs)
        else:
            lhs_dns = lhs_nd.asnumpy()
            rhs_dns = rhs_nd.asnumpy()
            lhs_nd = sp.csr_matrix(lhs_nd.asnumpy())
            rhs_nd = rhs_nd.asnumpy()
            # One warm up run, verify correctness
            lhs_nd_copy = sp.spmatrix.transpose(lhs_nd) if trans_lhs else lhs_nd
            out = dot_func_sparse(lhs_nd_copy, rhs_dns)
            sparse_cost = measure_cost(num_repeat, trans_lhs, False, dot_func_sparse, lhs_nd, rhs_nd)
            dense_cost = measure_cost(num_repeat, trans_lhs, True, dot_func_dense, lhs_dns, rhs_dns)

        speedup = dense_cost / sparse_cost
        # Print results
        m = lhs_shape[0]
        k = lhs_shape[1]
        n = rhs_shape[1]
        result_pattern = '{:15.1f} {:15.1f} {:>10} {:8d} {:8d} {:8d} {:13.2f} {:13.2f} {:8.2f}'
        results = result_pattern.format(lhs_den*100,
                                        rhs_den*100,
                                        str(ctx),
                                        m,
                                        k,
                                        n,
                                        sparse_cost*1000,
                                        dense_cost*1000,
                                        speedup)
        print(results)
コード例 #9
0
def compare_optimizer(opt1, opt2, shape, dtype, w_stype='default', g_stype='default',
                      rtol=1e-4, atol=1e-5, compare_states=True):
    """Compare opt1 and opt2."""
    if not isinstance(shape, list):
        if w_stype == 'default':
            w2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
            w1 = w2.copyto(default_context())
        elif w_stype == 'row_sparse' or w_stype == 'csr':
            w2 = rand_ndarray(shape, w_stype, density=1, dtype=dtype)
            w1 = w2.copyto(default_context()).tostype('default')
        else:
            raise Exception("type not supported yet")
        if g_stype == 'default':
            g2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
            g1 = g2.copyto(default_context())
        elif g_stype == 'row_sparse' or g_stype == 'csr':
            g2 = rand_ndarray(shape, g_stype, dtype=dtype)
            g1 = g2.copyto(default_context()).tostype('default')
        else:
            raise Exception("type not supported yet")

        state1 = opt1.create_state_multi_precision(0, w1)
        state2 = opt2.create_state_multi_precision(0, w2)
        if compare_states:
            compare_ndarray_tuple(state1, state2)

        opt1.update_multi_precision(0, w1, g1, state1)
        opt2.update_multi_precision(0, w2, g2, state2)
        if compare_states:
            compare_ndarray_tuple(state1, state2, rtol=rtol, atol=atol)
        assert_almost_equal(w1.asnumpy(), w2.asnumpy(), rtol=rtol, atol=atol)
    else:
        # test multi-tensor: Opt1 single-tensor reference, Opt2 multi-tensor
        from copy import deepcopy
        ntensors = len(shape)
        w1, g1 = [], []
        for s in shape:
            w1.append(mx.random.uniform(shape=s, ctx=default_context(), dtype=dtype))
            g1.append(mx.random.uniform(shape=s, ctx=default_context(), dtype=dtype))
        w1 = tuple(w1)
        w2 = deepcopy(w1)
        g1 = tuple(g1)
        g2 = deepcopy(g1)
        state2 = [opt2.create_state_multi_precision(0, w2[i]) for i in range(ntensors)]
        opt2.update_multi_precision(list(range(ntensors)), w2, g2, state2)
        for i in range(ntensors):
            state1 = opt1.create_state_multi_precision(i, w1[i])
            opt1.update_multi_precision(i, w1[i], g1[i], state1)
            if compare_states:
                compare_ndarray_tuple(state1, state2[i], rtol, atol)
            assert_almost_equal(w1[i].asnumpy(), w2[i].asnumpy(), rtol=rtol, atol=atol)
コード例 #10
0
    def check_sparse_aggregator(sparse_pull):
        stype = 'row_sparse'
        kv = init_kv_with_str(stype)

        # devices
        num_devs = 4
        devs = [mx.Context('cpu', i) for i in range(num_devs)]

        # single
        vals = [
            rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)
        ]
        expected_sum = np.zeros(shape)
        for v in vals:
            expected_sum += v.asnumpy()

        # prepare row_ids
        kv.push('a', vals)
        if sparse_pull:
            all_rows = mx.nd.array(np.arange(shape[0]))
            kv.row_sparse_pull('a', out=vals, row_ids=[all_rows] * len(vals))
        else:
            kv.pull('a', out=vals, ignore_sparse=False)
        result_sum = np.zeros(shape)
        for v in vals:
            result_sum += v.asnumpy()
        assert_almost_equal(result_sum, expected_sum * num_devs)

        # list
        vals = [[
            rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)
        ]] * len(keys)
        expected_sum = np.zeros(shape)
        for v in vals[0]:
            expected_sum += v.asnumpy()

        kv.push(str_keys, vals)
        if sparse_pull:
            kv.row_sparse_pull(str_keys,
                               out=vals,
                               row_ids=[[all_rows] * num_devs] * len(vals))
        else:
            kv.pull(str_keys, out=vals, ignore_sparse=False)
        for vv in vals:
            result_sum = np.zeros(shape)
            for v in vv:
                result_sum += v.asnumpy()
            assert_almost_equal(result_sum, expected_sum * num_devs)
コード例 #11
0
ファイル: dot.py プロジェクト: GrassSunFlower/mxnet
 def run_benchmark(mini_path):
     """Run benchmarks
     """
     data_shape = (feature_dim, )
     train_iter = _get_iter(mini_path, data_shape, batch_size)
     weight_row_dim = batch_size if transpose else feature_dim
     weight_shape = (weight_row_dim, output_dim)
     if not rsp:
         weight = mx.nd.random.uniform(low=0, high=1, shape=weight_shape)
     else:
         weight = rand_ndarray(weight_shape, "row_sparse", density=0.05, distribution="uniform")
     total_cost = {}
     average_cost = {}
     count = 0
     total_cost["sparse"] = 0.
     total_cost["dense"] = 0.
     for _ in train_iter:
         csr_data = train_iter.getdata()
         dns_data = csr_data.tostype('default')
         cost_sparse = measure_cost(num_repeat, False, False, mx.nd.sparse.dot, csr_data, weight, transpose_a=transpose)
         cost_dense = measure_cost(num_repeat, False, False, mx.nd.dot, dns_data, weight, transpose_a=transpose)
         total_cost["sparse"] += cost_sparse
         total_cost["dense"] += cost_dense
         count = count + 1
     average_cost["sparse"] = total_cost["sparse"] / count
     average_cost["dense"] = total_cost["dense"] / count
     return (average_cost["sparse"], average_cost["dense"])
コード例 #12
0
ファイル: dot.py プロジェクト: stefanhenneking/mxnet
 def run_benchmark(mini_path):
     """Run benchmarks
     """
     data_shape = (feature_dim, )
     train_iter = _get_iter(mini_path, data_shape, batch_size)
     weight_row_dim = batch_size if transpose else feature_dim
     weight_shape = (weight_row_dim, output_dim)
     if not rsp:
         weight = mx.nd.random_uniform(low=0, high=1, shape=weight_shape)
     else:
         weight = rand_ndarray(weight_shape, "row_sparse", density=0.05, distribution="uniform")
     total_cost = {}
     average_cost = {}
     count = 0
     total_cost["sparse"] = 0.
     total_cost["dense"] = 0.
     for _ in train_iter:
         csr_data = train_iter.getdata()
         dns_data = csr_data.tostype('default')
         cost_sparse = measure_cost(num_repeat, False, False, mx.nd.dot, csr_data, weight, transpose_a=transpose)
         cost_dense = measure_cost(num_repeat, False, False, mx.nd.dot, dns_data, weight, transpose_a=transpose)
         total_cost["sparse"] += cost_sparse
         total_cost["dense"] += cost_dense
         count = count + 1
     average_cost["sparse"] = total_cost["sparse"] / count
     average_cost["dense"] = total_cost["dense"] / count
     return (average_cost["sparse"], average_cost["dense"])
コード例 #13
0
def test_np_transpose():
    def np_transpose_grad(out_shape, dtype, axes=None):
        ograd = _np.ones(out_shape, dtype=dtype)
        if axes is None or axes == ():
            return _np.transpose(ograd, axes)
        np_axes = _np.array(list(axes))
        return _np.transpose(ograd, tuple(list(_np.argsort(np_axes))))

    class TestTranspose(HybridBlock):
        def __init__(self, axes=None):
            super(TestTranspose, self).__init__()
            self.axes = axes

        def hybrid_forward(self, F, a):
            return F.np.transpose(a, self.axes)

    for hybridize in [True, False]:
        for dtype in [_np.int32, _np.float32]:
            for ndim in range(7):
                shape = rand_shape_nd(ndim, dim=5, allow_zero_size=True)
                axeses = [None]
                if ndim == 0:
                    axeses += [()]
                else:
                    axes = [i for i in range(ndim)]
                    axeses.append(tuple(axes))
                    random.shuffle(axes)
                    axeses.append(tuple(axes))
                for axes in axeses:
                    test_trans = TestTranspose(axes)
                    if hybridize:
                        test_trans.hybridize()
                    x = rand_ndarray(shape).as_np_ndarray()
                    x = x.astype(dtype)
                    x.attach_grad()
                    np_out = _np.transpose(x.asnumpy(), axes)
                    with mx.autograd.record():
                        mx_out = test_trans(x)
                    assert mx_out.shape == np_out.shape
                    assert_almost_equal(mx_out.asnumpy(),
                                        np_out,
                                        rtol=1e-3,
                                        atol=1e-5,
                                        use_broadcast=False)
                    mx_out.backward()
                    np_backward = np_transpose_grad(np_out.shape, dtype, axes)
                    assert_almost_equal(x.grad.asnumpy(),
                                        np_backward,
                                        rtol=1e-3,
                                        atol=1e-5,
                                        use_broadcast=False)

                    mx_out = np.transpose(x, axes)
                    np_out = _np.transpose(x.asnumpy(), axes)
                    assert_almost_equal(mx_out.asnumpy(),
                                        np_out,
                                        rtol=1e-3,
                                        atol=1e-5,
                                        use_broadcast=False)
コード例 #14
0
def test_lstmp():
    hidden_size, projection_size = 3, 2
    rtol, atol = 1e-2, 1e-2
    batch_size, seq_len = 7, 11
    input_size = 5
    device = mx.gpu(0)
    lstm_input = mx.np.random.uniform(
        size=(seq_len, batch_size, input_size), device=device)
    shapes = {'i2h_weight': (hidden_size * 4, input_size),
              'h2h_weight': (hidden_size * 4, projection_size),
              'i2h_bias': (hidden_size * 4,),
              'h2h_bias': (hidden_size * 4,),
              'h2r_weight': (projection_size, hidden_size)}
    weights = {k: rand_ndarray(v).as_np_ndarray() for k, v in shapes.items()}
    lstm_layer = gluon.rnn.LSTM(hidden_size, projection_size=projection_size,
                                input_size=input_size)
    lstm_cell = gluon.rnn.LSTMPCell(hidden_size=hidden_size,
                                    projection_size=projection_size,
                                    input_size=input_size)
    lstm_layer.initialize(device=device)
    lstm_cell.initialize(device=device)
    layer_params = lstm_layer.collect_params()
    cell_params = lstm_cell.collect_params()
    params = (weights['{}_{}'.format(g, t)].reshape(-1)
              for t in ['weight', 'bias']
              for g in ['i2h', 'h2h', 'h2r']
              if g != 'h2r' or t != 'bias')

    net_params_concat = mx.np.concatenate(params)
    layer_params['rnn_param'].set_data(net_params_concat)
    for k, v in weights.items():
        cell_params[k].set_data(v)
    with autograd.record():
        layer_output = lstm_layer(lstm_input.copy())
        cell_output = lstm_cell.unroll(seq_len, lstm_input.copy(), layout='TNC',
                                       merge_outputs=True)[0]

    assert_almost_equal(layer_output, cell_output, rtol=rtol, atol=atol)
    layer_output.backward()
    cell_output.backward()
    layer_params_split = split_rnn_params(layer_params['rnn_param'].grad(),\
        'lstm', 1, input_size, hidden_size, False, projection_size=projection_size)
    for k, _ in weights.items():
        layer_grad = layer_params_split['l0_' + k]
        cell_grad = cell_params[k].grad()
        print('checking gradient for {}'.format('lstm0_l0_' + k))
        assert_almost_equal(layer_grad, cell_grad, rtol=rtol, atol=atol)
    check_rnn_layer_forward(gluon.rnn.LSTM(
        10, 2, projection_size=5), mx.np.ones((8, 3, 20)), device=device)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, projection_size=5, bidirectional=True), mx.np.ones(
        (8, 3, 20)), [mx.np.ones((4, 3, 5)), mx.np.ones((4, 3, 10))], device=device)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, dropout=0.5, projection_size=5), mx.np.ones((8, 3, 20)),
                            run_only=True, device=device)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, bidirectional=True, dropout=0.5, projection_size=5),
                            mx.np.ones((8, 3, 20)),
                            [mx.np.ones((4, 3, 5)), mx.np.ones((4, 3, 10))], run_only=True, device=device)
    lstm_layer.save_parameters('gpu_tmp.params')
    lstm_layer.load_parameters('gpu_tmp.params')
コード例 #15
0
ファイル: test_kvstore.py プロジェクト: dpom/incubator-mxnet
    def check_sparse_aggregator(sparse_pull):
        stype = 'row_sparse'
        kv = init_kv_with_str(stype)

        # devices
        num_devs = 4
        devs = [mx.Context('cpu', i) for i in range(num_devs)]

        # single
        vals = [rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]
        expected_sum = np.zeros(shape)
        for v in vals:
            expected_sum += v.asnumpy()

        # prepare row_ids
        kv.push('a', vals)
        if sparse_pull:
            all_rows = mx.nd.array(np.arange(shape[0]))
            kv.row_sparse_pull('a', out=vals, row_ids=[all_rows] * len(vals))
        else:
            kv.pull('a', out=vals, ignore_sparse=False)
        result_sum = np.zeros(shape)
        for v in vals:
            result_sum += v.asnumpy()
        assert_almost_equal(result_sum, expected_sum * num_devs)

        # list
        vals = [[rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]] * len(keys)
        expected_sum = np.zeros(shape)
        for v in vals[0]:
            expected_sum += v.asnumpy()

        kv.push(str_keys, vals)
        if sparse_pull:
            kv.row_sparse_pull(str_keys, out=vals, row_ids=[[all_rows] * num_devs] * len(vals))
        else:
            kv.pull(str_keys, out=vals, ignore_sparse=False)
        for vv in vals:
            result_sum = np.zeros(shape)
            for v in vv:
                result_sum += v.asnumpy()
            assert_almost_equal(result_sum, expected_sum * num_devs)
コード例 #16
0
    def test_quadratic_backward(self):
        a = np.random.random_sample()
        b = np.random.random_sample()
        c = np.random.random_sample()
        for ndim in range(1, 6):
            shape = tu.rand_shape_nd(ndim, 5)
            data = tu.rand_ndarray(shape=shape, stype='default')
            data_np = data.asnumpy()

            data = mx.sym.Variable('data')
            quad_sym = mx.sym.contrib.quadratic_v2(data=data, a=a, b=b, c=c)
コード例 #17
0
def test_lstmp():
    hidden_size, projection_size = 3, 2
    rtol, atol = 1e-2, 1e-2
    batch_size, seq_len = 7, 11
    input_size = 5
    ctx = mx.gpu(0)
    lstm_input = mx.nd.uniform(
        shape=(seq_len, batch_size, input_size), ctx=ctx)
    shapes = {'i2h_weight': (hidden_size * 4, input_size),
              'h2h_weight': (hidden_size * 4, projection_size),
              'i2h_bias': (hidden_size * 4,),
              'h2h_bias': (hidden_size * 4,),
              'h2r_weight': (projection_size, hidden_size)}
    weights = {k: rand_ndarray(v) for k, v in shapes.items()}
    lstm_layer = gluon.rnn.LSTM(hidden_size, projection_size=projection_size,
                                input_size=input_size, prefix='lstm0_')
    lstm_cell = gluon.contrib.rnn.LSTMPCell(hidden_size=hidden_size,
                                            projection_size=projection_size,
                                            input_size=input_size,
                                            prefix='lstm0_l0_')
    lstm_layer.initialize(ctx=ctx)
    lstm_cell.initialize(ctx=ctx)
    layer_params = lstm_layer.collect_params()
    cell_params = lstm_cell.collect_params()
    for k, v in weights.items():
        layer_params['lstm0_l0_' + k].set_data(v.copy())
        cell_params['lstm0_l0_' + k].set_data(v.copy())
    with autograd.record():
        layer_output = lstm_layer(lstm_input.copy())
        cell_output = lstm_cell.unroll(seq_len, lstm_input.copy(), layout='TNC',
                                       merge_outputs=True)[0]

    assert_almost_equal(layer_output, cell_output, rtol=rtol, atol=atol)
    layer_output.backward()
    cell_output.backward()
    for k, v in weights.items():
        layer_grad = layer_params['lstm0_l0_' + k].grad()
        cell_grad = cell_params['lstm0_l0_' + k].grad()
        print('checking gradient for {}'.format('lstm0_l0_' + k))
        assert_almost_equal(layer_grad, cell_grad, rtol=rtol, atol=atol)
    check_rnn_layer_forward(gluon.rnn.LSTM(
        10, 2, projection_size=5), mx.nd.ones((8, 3, 20)), ctx=ctx)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, projection_size=5, bidirectional=True), mx.nd.ones(
        (8, 3, 20)), [mx.nd.ones((4, 3, 5)), mx.nd.ones((4, 3, 10))], ctx=ctx)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, dropout=0.5, projection_size=5), mx.nd.ones((8, 3, 20)),
                            run_only=True, ctx=ctx)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, bidirectional=True, dropout=0.5, projection_size=5),
                            mx.nd.ones((8, 3, 20)),
                            [mx.nd.ones((4, 3, 5)), mx.nd.ones((4, 3, 10))], run_only=True, ctx=ctx)
    lstm_layer.save_parameters('gpu_tmp.params')
    lstm_layer.load_parameters('gpu_tmp.params')
コード例 #18
0
def test_lstmp():
    hidden_size, projection_size = 3, 2
    rtol, atol = 1e-2, 1e-2
    batch_size, seq_len = 7, 11
    input_size = 5
    ctx = mx.gpu(0)
    lstm_input = mx.nd.uniform(
        shape=(seq_len, batch_size, input_size), ctx=ctx)
    shapes = {'i2h_weight': (hidden_size * 4, input_size),
              'h2h_weight': (hidden_size * 4, projection_size),
              'i2h_bias': (hidden_size * 4,),
              'h2h_bias': (hidden_size * 4,),
              'h2r_weight': (projection_size, hidden_size)}
    weights = {k: rand_ndarray(v) for k, v in shapes.items()}
    lstm_layer = gluon.rnn.LSTM(hidden_size, projection_size=projection_size,
                                input_size=input_size, prefix='lstm0_')
    lstm_cell = gluon.contrib.rnn.LSTMPCell(hidden_size=hidden_size,
                                            projection_size=projection_size,
                                            input_size=input_size,
                                            prefix='lstm0_l0_')
    lstm_layer.initialize(ctx=ctx)
    lstm_cell.initialize(ctx=ctx)
    layer_params = lstm_layer.collect_params()
    cell_params = lstm_cell.collect_params()
    for k, v in weights.items():
        layer_params['lstm0_l0_' + k].set_data(v.copy())
        cell_params['lstm0_l0_' + k].set_data(v.copy())
    with autograd.record():
        layer_output = lstm_layer(lstm_input.copy())
        cell_output = lstm_cell.unroll(seq_len, lstm_input.copy(), layout='TNC',
                                       merge_outputs=True)[0]
    assert_almost_equal(layer_output.asnumpy(),
                        cell_output.asnumpy(), rtol=rtol, atol=atol)
    layer_output.backward()
    cell_output.backward()
    for k, v in weights.items():
        layer_grad = layer_params['lstm0_l0_' + k].grad()
        cell_grad = cell_params['lstm0_l0_' + k].grad()
        print('checking gradient for {}'.format('lstm0_l0_' + k))
        assert_almost_equal(layer_grad.asnumpy(), cell_grad.asnumpy(),
                            rtol=rtol, atol=atol)
    check_rnn_layer_forward(gluon.rnn.LSTM(
        10, 2, projection_size=5), mx.nd.ones((8, 3, 20)), ctx=ctx)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, projection_size=5, bidirectional=True), mx.nd.ones(
        (8, 3, 20)), [mx.nd.ones((4, 3, 5)), mx.nd.ones((4, 3, 10))], ctx=ctx)

    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, dropout=0.5, projection_size=5), mx.nd.ones((8, 3, 20)),
                            run_only=True, ctx=ctx)
    check_rnn_layer_forward(gluon.rnn.LSTM(10, 2, bidirectional=True, dropout=0.5, projection_size=5),
                            mx.nd.ones((8, 3, 20)),
                            [mx.nd.ones((4, 3, 5)), mx.nd.ones((4, 3, 10))], run_only=True, ctx=ctx)
コード例 #19
0
def test_sparse_aggregator():
    """aggregate sparse ndarray on muliple devices"""

    stype = 'row_sparse'
    kv = init_kv_with_str(stype)

    # devices
    num_devs = 4
    devs = [mx.Context('cpu', i) for i in range(num_devs)]

    # single
    vals = [rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]
    expected_sum = np.zeros(shape)
    for v in vals:
        expected_sum += v.asnumpy()

    # prepare row_ids
    all_rows = mx.nd.array(np.arange(shape[0]), dtype='int64')
    kv.push('a', vals)
    kv.row_sparse_pull('a', out=vals, row_ids=[all_rows] * len(vals))
    result_sum = np.zeros(shape)
    for v in vals:
        result_sum += v.asnumpy()
    assert_almost_equal(result_sum, expected_sum * num_devs)

    # list
    vals = [[rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]] * len(keys)
    expected_sum = np.zeros(shape)
    for v in vals[0]:
        expected_sum += v.asnumpy()

    kv.push(str_keys, vals)
    kv.row_sparse_pull(str_keys, out=vals, row_ids=[[all_rows] * num_devs] * len(vals))
    for vv in vals:
        result_sum = np.zeros(shape)
        for v in vv:
            result_sum += v.asnumpy()
        assert_almost_equal(result_sum, expected_sum * num_devs)
コード例 #20
0
def test_depthtospace():
    def numpy_depth_to_space(x, blocksize):
        b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
        tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h, w])
        tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
        y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize, w * blocksize])
        return y

    shape_inp = (LARGE_X, 8, 4, 2)
    data = rand_ndarray(shape_inp, 'default')
    data_np = data.asnumpy()
    expected = numpy_depth_to_space(data_np, 2)
    output = mx.nd.depth_to_space(data, 2)
    assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
コード例 #21
0
def test_spacetodepth():
    def numpy_space_to_depth(x, blocksize):
        b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
        tmp = np.reshape(x, [b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        tmp = np.transpose(tmp, [0, 3, 5, 1, 2, 4])
        y = np.reshape(tmp, [b, c * (blocksize**2), h // blocksize, w // blocksize])
        return y

    shape_inp = (LARGE_X, 2, 8, 4)
    data = rand_ndarray(shape_inp, 'default')
    data_np = data.asnumpy()
    expected = numpy_space_to_depth(data_np, 2)
    output = mx.nd.space_to_depth(data, 2)
    assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
コード例 #22
0
def compare_optimizer(opt1,
                      opt2,
                      shape,
                      dtype,
                      w_stype='default',
                      g_stype='default',
                      rtol=1e-4,
                      atol=1e-5,
                      compare_states=True):
    """Compare opt1 and opt2."""
    if w_stype == 'default':
        w2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
        w1 = w2.copyto(default_context())
    elif w_stype == 'row_sparse' or w_stype == 'csr':
        w2 = rand_ndarray(shape, w_stype, density=1, dtype=dtype)
        w1 = w2.copyto(default_context()).tostype('default')
    else:
        raise Exception("type not supported yet")
    if g_stype == 'default':
        g2 = mx.random.uniform(shape=shape, ctx=default_context(), dtype=dtype)
        g1 = g2.copyto(default_context())
    elif g_stype == 'row_sparse' or g_stype == 'csr':
        g2 = rand_ndarray(shape, g_stype, dtype=dtype)
        g1 = g2.copyto(default_context()).tostype('default')
    else:
        raise Exception("type not supported yet")

    state1 = opt1.create_state_multi_precision(0, w1)
    state2 = opt2.create_state_multi_precision(0, w2)
    if compare_states:
        compare_ndarray_tuple(state1, state2)

    opt1.update_multi_precision(0, w1, g1, state1)
    opt2.update_multi_precision(0, w2, g2, state2)
    if compare_states:
        compare_ndarray_tuple(state1, state2, rtol=rtol, atol=atol)
    assert_almost_equal(w1.asnumpy(), w2.asnumpy(), rtol=rtol, atol=atol)
コード例 #23
0
def bench_dot(lhs_row_dim,
              lhs_col_dim,
              rhs_col_dim,
              density,
              rhs_density,
              dot_func,
              trans_lhs,
              lhs_stype,
              rhs_stype,
              only_storage,
              distribution="uniform"):
    """ Benchmarking both storage and dot
    """
    lhs_nd = rand_ndarray((lhs_row_dim, lhs_col_dim),
                          lhs_stype,
                          density,
                          distribution=distribution)
    if not only_storage:
        rhs_nd = rand_ndarray((lhs_col_dim, rhs_col_dim),
                              rhs_stype,
                              density=rhs_density,
                              distribution=distribution)
        out = dot_func(lhs_nd, rhs_nd, trans_lhs)
    mx.nd.waitall()
コード例 #24
0
    def test_quadratic_forward(self):
        def f(x, a, b, c):
            return a * x**2 + b * x + c

        a = np.random.random_sample()
        b = np.random.random_sample()
        c = np.random.random_sample()
        for ndim in range(1, 6):
            shape = tu.rand_shape_nd(ndim, 5)
            data = tu.rand_ndarray(shape=shape, stype='default')
            data_np = data.asnumpy()
            expected = f(data_np, a, b, c)
            output = mx.nd.contrib.quadratic_v2(data=data, a=a, b=b,
                                                c=c).asnumpy()
            tu.assert_almost_equal(output, expected)
コード例 #25
0
ファイル: test_kvstore.py プロジェクト: mamonraab/mxnet
def test_sparse_aggregator():
    """aggregate sparse ndarray on muliple devices"""

    stype = 'row_sparse'
    kv = init_kv(stype)

    # devices
    num_devs = 4
    devs = [mx.Context('cpu', i) for i in range(num_devs)]

    # single
    vals = [rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]
    expected_sum = np.zeros(shape)
    for v in vals:
        expected_sum += v.asnumpy()

    kv.push(3, vals)
    kv.pull(3, out = vals)
    result_sum = np.zeros(shape)
    for v in vals:
        result_sum += v.asnumpy()
    assert_almost_equal(result_sum, expected_sum * num_devs)

    # list
    vals = [[rand_ndarray(shape, stype).copyto(devs[i]) for i in range(num_devs)]] * len(keys)
    expected_sum = np.zeros(shape)
    for v in vals[0]:
        expected_sum += v.asnumpy()

    kv.push(keys, vals)
    kv.pull(keys, out = vals)
    for vv in vals:
        result_sum = np.zeros(shape)
        for v in vv:
            result_sum += v.asnumpy()
        assert_almost_equal(result_sum, expected_sum * num_devs)
コード例 #26
0
def test_np_reshape():
    class TestReshape(HybridBlock):
        def __init__(self, newshape):
            super(TestReshape, self).__init__()
            self._newshape = newshape

        def hybrid_forward(self, F, a):
            return F.np.reshape(a, self._newshape)

    shape_pairs = [((2, 6), (6, 2)), ((2, 6), (3, 4)), ((1, 0), (0, )),
                   ((0, 0), (0, )), ((), (1, 1, 1))]
    for hybridize in [True, False]:
        for shape_pair in shape_pairs:
            shape1, shape2 = shape_pair
            print(shape1, shape2)
            test_reshape = TestReshape(shape2)
            if hybridize:
                test_reshape.hybridize()
            x = rand_ndarray(shape1).as_np_ndarray()
            x.attach_grad()
            np_out = _np.reshape(x.asnumpy(), shape2)
            with mx.autograd.record():
                mx_out = test_reshape(x)
            assert mx_out.shape == np_out.shape
            assert_almost_equal(mx_out.asnumpy(),
                                np_out,
                                rtol=1e-3,
                                atol=1e-5,
                                use_broadcast=False)
            mx_out.backward()
            np_backward = _np.ones(shape1)
            assert_almost_equal(x.grad.asnumpy(),
                                np_backward,
                                rtol=1e-3,
                                atol=1e-5,
                                use_broadcast=False)

            mx_out = np.reshape(x, shape2)
            np_out = _np.reshape(x.asnumpy(), shape2)
            assert_almost_equal(mx_out.asnumpy(),
                                np_out,
                                rtol=1e-3,
                                atol=1e-5,
                                use_broadcast=False)
コード例 #27
0
def test_quantize_float32_to_int8():
    shape = rand_shape_nd(4)
    data = rand_ndarray(shape, 'default', dtype='float32')
    min_range = mx.nd.min(data)
    max_range = mx.nd.max(data)
    qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
    data_np = data.asnumpy()
    min_range = min_range.asscalar()
    max_range = max_range.asscalar()
    real_range = np.maximum(np.abs(min_range), np.abs(max_range))
    quantized_range = 127.0
    scale = quantized_range / real_range
    assert qdata.dtype == np.int8
    assert min_val.dtype == np.float32
    assert max_val.dtype == np.float32
    assert same(min_val.asscalar(), -real_range)
    assert same(max_val.asscalar(), real_range)
    qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
    assert same(qdata.asnumpy(), qdata_np)
コード例 #28
0
 def check_regression(symbol, forward, shape):
     # init executor
     data_s = mx.symbol.Variable('data')
     label_s = mx.symbol.Variable('label')
     out_s = symbol(data=data_s, label=label_s)
     exe = out_s.simple_bind(ctx=mx.cpu(0), data=shape, label=shape)
     arg_map = dict(zip(out_s.list_arguments(), exe.arg_arrays))
     # init data
     data = mx.random.uniform(-1, -1, shape)
     arg_map["data"][:] = data
     atol = 1e-5
     density = 0.5
     stype = 'default'
     label = arg_map["label"]
     label[:] = rand_ndarray(shape, stype, density=density)
     exe.forward(is_train=True)
     exe.backward()
     np_out = forward(data.asnumpy())
     assert_almost_equal(exe.outputs[0].asnumpy(), np_out, atol=atol)
コード例 #29
0
def test_quantize_float32_to_int8():
    shape = rand_shape_nd(4)
    data = rand_ndarray(shape, 'default', dtype='float32')
    min_range = mx.nd.min(data)
    max_range = mx.nd.max(data)
    qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
    data_np = data.asnumpy()
    min_range = min_range.asscalar()
    max_range = max_range.asscalar()
    real_range = np.maximum(np.abs(min_range), np.abs(max_range))
    quantized_range = 127.0
    scale = quantized_range / real_range
    assert qdata.dtype == np.int8
    assert min_val.dtype == np.float32
    assert max_val.dtype == np.float32
    assert same(min_val.asscalar(), -real_range)
    assert same(max_val.asscalar(), real_range)
    qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
    assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1)
コード例 #30
0
def test_np_tensordot():
    class TestTensordot(HybridBlock):
        def __init__(self, axes):
            super(TestTensordot, self).__init__()
            self._axes = axes

        def hybrid_forward(self, F, a, b):
            return F.np.tensordot(a, b, self._axes)

    def tensordot_backward(a, b, axes=2):
        if (a.ndim < 1) or (b.ndim < 1):
            raise ValueError('An input is zero-dim')

        if _np.isscalar(axes):
            a_axes_summed = [i + a.ndim - axes for i in range(axes)]
            b_axes_summed = [i for i in range(axes)]
        else:
            if len(axes) != 2:
                raise ValueError('Axes must consist of two arrays.')
            a_axes_summed, b_axes_summed = axes
            if _np.isscalar(a_axes_summed):
                a_axes_summed = a_axes_summed,
            if _np.isscalar(b_axes_summed):
                b_axes_summed = b_axes_summed,

            for i in range(len(a_axes_summed)):
                a_axes_summed[i] = (a_axes_summed[i] + a.ndim) % a.ndim

            for i in range(len(b_axes_summed)):
                b_axes_summed[i] = (b_axes_summed[i] + b.ndim) % b.ndim

        if len(a_axes_summed) != len(b_axes_summed):
            raise ValueError('Axes length mismatch')

        a_axes_remained = []
        for i in range(a.ndim):
            if not (i in a_axes_summed):
                a_axes_remained.append(i)
        a_axes = a_axes_remained[:] + a_axes_summed[:]

        b_axes_remained = []
        for i in range(b.ndim):
            if not (i in b_axes_summed):
                b_axes_remained.append(i)
        b_axes = b_axes_summed[:] + b_axes_remained[:]

        ad1 = _np.prod([a.shape[i] for i in a_axes_remained
                        ]) if len(a_axes_remained) > 0 else 1
        ad2 = _np.prod([a.shape[i] for i in a_axes_summed
                        ]) if len(a_axes_summed) > 0 else 1
        bd1 = _np.prod([b.shape[i] for i in b_axes_summed
                        ]) if len(b_axes_summed) > 0 else 1
        bd2 = _np.prod([b.shape[i] for i in b_axes_remained
                        ]) if len(b_axes_remained) > 0 else 1

        out_grad = _np.ones((ad1, bd2))

        new_a = _np.transpose(a, a_axes)
        new_a_shape = new_a.shape[:]
        new_a = new_a.reshape((ad1, ad2))
        new_b = _np.transpose(b, b_axes)
        new_b_shape = new_b.shape[:]
        new_b = new_b.reshape((bd1, bd2))

        reverse_a_axes = [0 for i in a_axes]
        for i in range(len(a_axes)):
            reverse_a_axes[a_axes[i]] = i

        reverse_b_axes = [0 for i in b_axes]
        for i in range(len(b_axes)):
            reverse_b_axes[b_axes[i]] = i

        grad_b = _np.dot(new_a.T, out_grad).reshape(new_b_shape)
        grad_b = _np.transpose(grad_b, reverse_b_axes)
        grad_a = _np.dot(out_grad, new_b.T).reshape(new_a_shape)
        grad_a = _np.transpose(grad_a, reverse_a_axes)

        return [grad_a, grad_b]

    # test non zero size input
    tensor_shapes = [
        ((3, 5), (5, 4), 1),  # (a_shape, b_shape, axes)
        ((3, ), (3, ), 1),
        ((3, 4, 5, 3, 2), (5, 3, 2, 1, 2), 3),
        ((3, 5, 4, 3, 2), (2, 3, 5, 1, 2), [[1, 3, 4], [2, 1, 0]]),
        ((3, 5, 4), (5, 4, 3), [[1, 0, 2], [0, 2, 1]]),
        ((3, 5, 4), (5, 3, 4), [[2, 0], [-1, -2]]),
        ((2, 2), (2, 2), 2),
        ((3, 5, 4), (5, ), [[-2], [0]]),
        ((3, 5, 4), (5, ), [[1], [0]]),
        ((2, ), (2, 3), 1),
        ((3, ), (3, ), 0),
        ((2, ), (2, 3), 0),
        ((3, 5, 4), (5, ), 0),
        ((2, 3, 4), (4, 3, 2), [[], []]),
        ((3, 0), (0, 5), 1),
        ((3, 0), (0, 4), [[1], [0]]),
        ((0, 3), (3, 5), 1),
        ((0, 3), (5, 0), [[0], [1]])
    ]

    for hybridize in [True, False]:
        for a_shape, b_shape, axes in tensor_shapes:
            for dtype in [_np.float32, _np.float64]:
                test_tensordot = TestTensordot(axes)
                if hybridize:
                    test_tensordot.hybridize()
                a = rand_ndarray(shape=a_shape, dtype=dtype).as_np_ndarray()
                b = rand_ndarray(shape=b_shape, dtype=dtype).as_np_ndarray()
                a.attach_grad()
                b.attach_grad()

                np_out = _np.tensordot(a.asnumpy(), b.asnumpy(), axes)
                with mx.autograd.record():
                    mx_out = test_tensordot(a, b)
                assert mx_out.shape == np_out.shape
                assert_almost_equal(mx_out.asnumpy(),
                                    np_out,
                                    rtol=1e-3,
                                    atol=1e-5)
                mx_out.backward()
                np_backward = tensordot_backward(a.asnumpy(), b.asnumpy(),
                                                 axes)
                assert_almost_equal(a.grad.asnumpy(),
                                    np_backward[0],
                                    rtol=1e-3,
                                    atol=1e-5)
                assert_almost_equal(b.grad.asnumpy(),
                                    np_backward[1],
                                    rtol=1e-3,
                                    atol=1e-5)

                # Test imperative once again
                mx_out = np.tensordot(a, b, axes)
                np_out = _np.tensordot(a.asnumpy(), b.asnumpy(), axes)
                assert_almost_equal(mx_out.asnumpy(),
                                    np_out,
                                    rtol=1e-3,
                                    atol=1e-5)

                # test numeric gradient
                if (_np.prod(a_shape) > 0 and _np.prod(b_shape) > 0):
                    a_sym = mx.sym.Variable("a").as_np_ndarray()
                    b_sym = mx.sym.Variable("b").as_np_ndarray()
                    mx_sym = mx.sym.np.tensordot(a_sym, b_sym,
                                                 axes).as_nd_ndarray()
                    check_numeric_gradient(
                        mx_sym, [a.as_nd_ndarray(),
                                 b.as_nd_ndarray()],
                        rtol=1e-1,
                        atol=1e-1,
                        dtype=dtype)
コード例 #31
0
    def check_binary_op_result(shape1, shape2, op, dtype=None):
        if shape1 is None:
            mx_input1 = abs(_np.random.uniform()) + 1
            np_input1 = mx_input1
        else:
            mx_input1 = (rand_ndarray(shape1, dtype=dtype).abs() + 1).as_np_ndarray()
            mx_input1.attach_grad()
            np_input1 = mx_input1.asnumpy()
        if shape2 is None:
            mx_input2 = abs(_np.random.uniform()) + 1
            np_input2 = mx_input2
        else:
            mx_input2 = (rand_ndarray(shape2, dtype=dtype).abs() + 1).as_np_ndarray()
            mx_input2.attach_grad()
            np_input2 = mx_input2.asnumpy()

        scalar = None
        reverse = False
        if isinstance(mx_input1, mx.nd.NDArray) and not isinstance(mx_input2, mx.nd.NDArray):
            scalar = mx_input2
            reverse = False
        elif isinstance(mx_input2, mx.nd.NDArray) and not isinstance(mx_input1, mx.nd.NDArray):
            scalar = mx_input1
            reverse = True

        grad_func = _get_grad_func(op, scalar, reverse)
        np_out = get_np_ret(np_input1, np_input2, op)
        ograd = _np.ones_like(np_out)
        for hybridize in [True, False]:
            if scalar is None:
                get_mx_ret_np = TestBinaryElementWiseOp(op)
                get_mx_ret_classic = TestBinaryElementWiseOp(op)
                if hybridize:
                    get_mx_ret_np.hybridize()
                    get_mx_ret_classic.hybridize()
                if grad_func is None:
                    mx_out = get_mx_ret_np(mx_input1, mx_input2)
                else:
                    with mx.autograd.record():
                        mx_out = get_mx_ret_np(mx_input1, mx_input2)
                    mx_out.backward()
                assert type(mx_out) == np.ndarray
                if op in logic_ops:
                    assert np_out.dtype == mx_out.dtype
                assert_almost_equal(mx_out.asnumpy(), np_out, atol=1e-6, rtol=1e-5, use_broadcast=False)

                if grad_func is not None:
                    x1_grad_expected, x2_grad_expected = grad_func(ograd, np_input1, np_input2, np_out)
                    assert_almost_equal(mx_input1.grad.asnumpy(), x1_grad_expected, atol=1e-5, rtol=1e-3,
                                        use_broadcast=False)
                    assert_almost_equal(mx_input2.grad.asnumpy(), x2_grad_expected, atol=1e-5, rtol=1e-3,
                                        use_broadcast=False)
            else:
                get_mx_ret = TestBinaryElementWiseOp(op, scalar=scalar, reverse=reverse)
                if hybridize:
                    get_mx_ret.hybridize()
                if reverse:
                    mx_input = mx_input2
                else:
                    mx_input = mx_input1

                if grad_func is None:
                    mx_out = get_mx_ret(mx_input)
                else:
                    with mx.autograd.record():
                        mx_out = get_mx_ret(mx_input)
                    mx_out.backward()
                assert type(mx_out) == np.ndarray

                if op in logic_ops:
                    assert np_out.dtype == mx_out.dtype
                assert_almost_equal(mx_out.asnumpy(), np_out, atol=1e-6, rtol=1e-5, use_broadcast=False)

                # check grad
                if grad_func is not None:
                    x_grad_expected = grad_func(ograd, np_input1, np_input2, np_out)
                    assert_almost_equal(mx_input.grad.asnumpy(), x_grad_expected, atol=1e-5, rtol=1e-3,
                                        use_broadcast=False)