# load two-moons-dataset train_file = open('dataset/moons/moons_train.pkl', 'rb') test_file = open('dataset/moons/moons_test.pkl', 'rb') moons_train = pkl.load(train_file) # tuple of training data moons_test = pkl.load(test_file) # tuple of testing data train_file.close() test_file.close() train_X = moons_train[0] # instances of training data train_Y = moons_train[1] # labels of training data test_X = moons_test[0] # instances of testing data test_Y = moons_test[1] # labels of testing data # training try: myDML.train(moons_train) except Exception as e: print(e) sys.exit(-1) # evaluating for K in [1, 3, 5]: # testing with Euclidean_distance predict_label = np.zeros(test_X.shape[0]) for i in range(test_X.shape[0]): distance_vector = np.zeros(train_X.shape[0]) for j in range(train_X.shape[0]): distance_vector[j] = myDML.Euclidean_distance( test_X[i], train_X[j]) labels_of_K_neighbor = train_Y[distance_vector.argsort()[0:K]] predict_label[i] = collections.Counter(
'dataset/Letter_Recognition/lr_train_' + str(r) + '.pkl', 'rb') test_file = open( 'dataset/Letter_Recognition/lr_test_' + str(r) + '.pkl', 'rb') LR_train = pkl.load(train_file) # tuple of training data LR_test = pkl.load(test_file) # tuple of testing data train_file.close() test_file.close() train_X = LR_train[0] # instances of training data train_Y = LR_train[1] # labels of training data test_X = LR_test[0] # instances of testing data test_Y = LR_test[1] # labels of testing data # training try: myDML.train(LR_train) except Exception as e: print('异常', e) sys.exit(-1) # evaluating for K in [1, 3, 5]: # testing with Euclidean_distance predict_label = np.zeros(test_X.shape[0]) for i in range(test_X.shape[0]): distance_vector = np.zeros(train_X.shape[0]) for j in range(train_X.shape[0]): distance_vector[j] = myDML.Euclidean_distance( test_X[i], train_X[j]) labels_of_K_neighbor = train_Y[distance_vector.argsort()[0:K]] predict_label[i] = collections.Counter(