コード例 #1
0
ファイル: predict.py プロジェクト: ChenLiangbo/iloveme
order ={"0":"Open","1":"High","2":"Low","3":"Close","4":"Volume*e-6"}
yahooData = np.load('yahooData.npy')
Adj_Close,High,Low,Close,Open = np.hsplit(yahooData,5)
Volume = Adj_Close

yahooData = np.hstack([Open,High,Low,Close,Volume])

shape = yahooData.shape
print "shape = ",shape
print "-"*80
# print yahooData[0:10,:]


print "Close shape = ",Close.shape

myNNmodel = MyNeurolNetworkModel()
kdj = myNNmodel.calculate_kdj(yahooData)    #(None,3)
print "kdj = ",kdj.shape

declose = myNNmodel.calculate_dclose(Close)  #(None,4)
print "declose = ",declose.shape

logfit = myNNmodel.calculate_logfit(Close)   #(None,1)
print "logfit = ",logfit.shape

closeExponent = myNNmodel.calculate_exponent(Close,exponent = 0.9) #(None,1)
print "closeExponent = ",closeExponent.shape


from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
コード例 #2
0
# x_train = x_sample[train_start:train_end,:]

x_train = np.vstack([x_sample[0:100,:],x_sample[300:500,:],x_sample[700:900,:],x_sample[1100:1150,:]])
y_train = np.vstack([y_sample[0:100,:],y_sample[300:500,:],y_sample[700:900,:],y_sample[1100:1150,:]])

print "x_train.shape = ",x_train.shape
sample_number = x_train.shape[0]

test_start = 1150
test_end = 1200
y_test = y_sample[test_start:test_end,:]
x_test = x_sample[test_start:test_end,:]

outdir = os.path.join(os.path.dirname(__file__),'stockClose/')

myNNmodel = MyNeurolNetworkModel()
# myNNmodel.outdir = outdir
myNNmodel.errorRate = 0.0105
myNNmodel.learningRate = 0.001

print "myNNmodel outdir = ",myNNmodel.outdir

if not os.path.exists(outdir):
    os.mkdir(outdir)

# myNNmodel.train(x_train,y_train)
print "layerOne = ",myNNmodel.layerOne
print "myNNmodel train successfully ..."

y_test_predict = myNNmodel.predict(x_test)
from matplotlib import pyplot as plt
コード例 #3
0
ファイル: stock_close.py プロジェクト: ChenLiangbo/iloveme
# x_train = x_sample[train_start:train_end,:]

x_train = np.vstack([x_sample[0:100,:],x_sample[300:500,:],x_sample[700:900,:],x_sample[1100:1150,:]])
y_train = np.vstack([y_sample[0:100,:],y_sample[300:500,:],y_sample[700:900,:],y_sample[1100:1150,:]])

print "x_train.shape = ",x_train.shape
sample_number = x_train.shape[0]

test_start = 1150
test_end = 1200
y_test = y_sample[test_start:test_end,:]
x_test = x_sample[test_start:test_end,:]

outdir = os.path.join(os.path.dirname(__file__),'stock_close/')

myNNmodel = MyNeurolNetworkModel()
# myNNmodel.outdir = outdir
myNNmodel.errorRate = 0.0105
myNNmodel.learningRate = 0.001


print "myNNmodel outdir = ",myNNmodel.outdir

if not os.path.exists(outdir):
    os.mkdir(outdir)

# myNNmodel.train(x_train,y_train)

print "myNNmodel train successfully ..."

y_test_predict = myNNmodel.predict(x_test)
コード例 #4
0
y_train = np.vstack([
    y_sample[0:100, :], y_sample[300:500, :], y_sample[700:900, :],
    y_sample[1100:1150, :]
])

print "x_train.shape = ", x_train.shape
sample_number = x_train.shape[0]

test_start = 1150
test_end = 1200
y_test = y_sample[test_start:test_end, :]
x_test = x_sample[test_start:test_end, :]

outdir = os.path.join(os.path.dirname(__file__), 'stock_close/')

myNNmodel = MyNeurolNetworkModel()
# myNNmodel.outdir = outdir
myNNmodel.errorRate = 0.0105
myNNmodel.learningRate = 0.001

print "myNNmodel outdir = ", myNNmodel.outdir

if not os.path.exists(outdir):
    os.mkdir(outdir)

# myNNmodel.train(x_train,y_train)

print "myNNmodel train successfully ..."

y_test_predict = myNNmodel.predict(x_test)
from matplotlib import pyplot as plt
コード例 #5
0
ファイル: predict.py プロジェクト: ChenLiangbo/iloveme
print "ysample = ",ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ",x_train.shape
print "y_train.shape = ",y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ",x_test.shape
print "y_test.shape = ",y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne  = 15
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 4000
# myNNmodel.batchSize  = 20


y_predict = myNNmodel.predict(x_test)
print y_predict[0:10]

np.save('./npyfile/y_predict1',y_predict)

result = myNNmodel.f_measure(y_predict,y_test)
print "result = ",result
コード例 #6
0
ファイル: views.py プロジェクト: ChenLiangbo/iloveme
    y_sample = np.zeros((shape[0]-related,1))

    for i in xrange(shape[0] - related):
        x_sample[i,:] = closeArray[i:i+related,0].reshape(1,related)
        y_sample[i,0] = closeArray[i+related,0]

    train_start = 600
    train_end = 1150
    y_train = y_sample[train_start:train_end,:]
    x_train = x_sample[train_start:train_end,:]

    test_start = 1000
    test_end = 1200
    y_test = y_sample[test_start:test_end,:]
    x_test = x_sample[test_start:test_end,:]

    test_start_1 = 400
    test_end_1 = 600
    x_test_1 = x_sample[test_start:test_end,:]
    y_test_1 = y_sample[test_start:test_end,:]

    mYnnModel = MyNeurolNetworkModel()
    mYnnModel.errorRate = 0.040

    if is_train == 1:
        mYnnModel.train(x_train,y_train)
        return crossDomainResponse({"code":200,"msg":"ok"})

    else:
        y_predict = mYnnModel.predict(x_test)
        return crossDomainResponse({"code":200,"msg":"ok","y_test":y_test.tolist(),"y_predict":y_predict.tolist()})
コード例 #7
0
print "ysample = ",ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ",x_train.shape
print "y_train.shape = ",y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ",x_test.shape
print "y_test.shape = ",y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne  = 15
myNNmodel.isDropout = True
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 4000

# myNNmodel.train(x_train,y_train)


'''
y_predict = myNNmodel.predict(x_train)
print y_predict[0:10]
for i in xrange(y_predict.shape[0]):
    if y_predict[i] >= 0.5:
        y_predict[i] = 1
コード例 #8
0
columns = np.hsplit(dataset, 9)
xsample = np.hstack(columns[0:8])
ysample = columns[8]
shape = xsample.shape
print "xsample = ", xsample.shape
print "ysample = ", ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ", x_train.shape
print "y_train.shape = ", y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ", x_test.shape
print "y_test.shape = ", y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne = 15
myNNmodel.isDropout = True
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 7000

myNNmodel.train(x_train, y_train)

print "train model successfully!"
コード例 #9
0
ファイル: dropout.py プロジェクト: ChenLiangbo/iloveme
columns = np.hsplit(dataset,9)
xsample = np.hstack(columns[0:8])
ysample = columns[8]
shape = xsample.shape
print "xsample = ",xsample.shape
print "ysample = ",ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ",x_train.shape
print "y_train.shape = ",y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ",x_test.shape
print "y_test.shape = ",y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne  = 15
myNNmodel.isDropout = True
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 7000

myNNmodel.train(x_train,y_train)

print "train model successfully!"
コード例 #10
0
#!usr/bin/env/python
# -*- coding: utf-8 -*-
import numpy as np
import os
from myNeurolNetworkModel import MyNeurolNetworkModel
order = {"0": "Open", "1": "High", "2": "Low", "3": "Close", "4": "Volume*e-6"}
yahooData = np.load('yahoo_finance5.npy')
Open, High, Low, Close, Volume = np.hsplit(yahooData, 5)

shape = yahooData.shape
print("shape = ", shape)
print("-" * 80)

print("Close shape = ", Close.shape)

myNNmodel = MyNeurolNetworkModel()
kdj = myNNmodel.calculate_kdj(yahooData)  #(None,3)
print("kdj = ", kdj.shape)

declose = myNNmodel.calculate_dclose(Close)  #(None,4)
print("declose = ", declose.shape)

logfit = myNNmodel.calculate_logfit(Close)  #(None,1)
print("logfit = ", logfit.shape)

closeExponent = myNNmodel.calculate_exponent(Close, exponent=0.9)  #(None,1)
print("closeExponent = ", closeExponent.shape)

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
newData = pca.fit_transform(np.hstack([Open, High, Low, Volume]))  #(None,2)
コード例 #11
0
import os
from myNeurolNetworkModel import MyNeurolNetworkModel
'''
每天的五个数据 high,low,close,open,adj_close,
'''
order = {"0": "Open", "1": "High", "2": "Low", "3": "Close", "4": "Volume*e-6"}
yahooData = np.load('yahoo_finance5.npy')
Open, High, Low, Close, Volume = np.hsplit(yahooData, 5)

shape = yahooData.shape
print "shape = ", shape
print "-" * 80

print "Close shape = ", Close.shape

myNNmodel = MyNeurolNetworkModel()
kdj = myNNmodel.calculate_kdj(yahooData)
print "kdj = ", kdj.shape

declose = myNNmodel.calculate_dclose(Close)
print "declose = ", declose.shape

logfit = myNNmodel.calculate_logfit(Close)
print "logfit = ", logfit.shape

closeExponent = myNNmodel.calculate_exponent(Close)
print "closeExponent = ", closeExponent.shape

# x_sample = np.hstack([Open,High,Low,Volume,kdj,logfit,closeExponent])
x_sample = np.hstack([Open, kdj, logfit, closeExponent])
y_sample = Close[1:]
コード例 #12
0
    train_start = 600
    train_end = 1150
    y_train = y_sample[train_start:train_end, :]
    x_train = x_sample[train_start:train_end, :]

    test_start = 1000
    test_end = 1200
    y_test = y_sample[test_start:test_end, :]
    x_test = x_sample[test_start:test_end, :]

    test_start_1 = 400
    test_end_1 = 600
    x_test_1 = x_sample[test_start:test_end, :]
    y_test_1 = y_sample[test_start:test_end, :]

    mYnnModel = MyNeurolNetworkModel()
    mYnnModel.errorRate = 0.040

    if is_train == 1:
        mYnnModel.train(x_train, y_train)
        return crossDomainResponse({"code": 200, "msg": "ok"})

    else:
        y_predict = mYnnModel.predict(x_test)
        return crossDomainResponse({
            "code": 200,
            "msg": "ok",
            "y_test": y_test.tolist(),
            "y_predict": y_predict.tolist()
        })
コード例 #13
0
ファイル: train.py プロジェクト: ChenLiangbo/iloveme
xsample = np.hstack(columns[0:8])
ysample = columns[8]
shape = xsample.shape
print "xsample = ",xsample.shape
print "ysample = ",ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ",x_train.shape
print "y_train.shape = ",y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ",x_test.shape
print "y_test.shape = ",y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne  = 15
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 7000
# myNNmodel.batchSize  = 20

myNNmodel.train(x_train,y_train,x_test,y_test)

print "train model successfully!"

コード例 #14
0
    y_sample[1100:1250, :]
])

print "x_train.shape = ", x_train.shape
sample_number = x_train.shape[0]

test_start = 900
test_end = 1100
y_test = y_sample[test_start:test_end, :]
x_test = x_sample[test_start:test_end, :]

outdir = './images/'
if not os.path.exists(outdir):
    os.mkdir(outdir)

myNNmodel = MyNeurolNetworkModel()
myNNmodel.inputNumber = 4

# myNNmodel.outdir = outdir
myNNmodel.errorRate = 0.01111
myNNmodel.learningRate = 0.001
# myNNmodel.train(x_train,y_train)

print "myNNmodel train successfully ..."

y_test_predict = myNNmodel.predict(x_test)
from matplotlib import pyplot as plt

plt.plot(y_test, 'ro')
plt.plot(y_test_predict, 'bo')
plt.plot(y_test, 'r-')
コード例 #15
0
columns = np.hsplit(dataset, 9)
xsample = np.hstack(columns[0:8])
ysample = columns[8]
shape = xsample.shape
print "xsample = ", xsample.shape
print "ysample = ", ysample.shape

# indexList = np.random.permutation(shape[0])
indexList = range(shape[0])

x_train = xsample[indexList[0:538]]
y_train = ysample[indexList[0:538]]
print "x_train.shape = ", x_train.shape
print "y_train.shape = ", y_train.shape

x_test = xsample[indexList[538:]]
y_test = ysample[indexList[538:]]
print "x_test.shape = ", x_test.shape
print "y_test.shape = ", y_test.shape

myNNmodel = MyNeurolNetworkModel()
myNNmodel.errorRate = 0.918
myNNmodel.layerOne = 15
myNNmodel.learningRate = 0.001
myNNmodel.trainTimes = 7000
# myNNmodel.batchSize  = 20

myNNmodel.train(x_train, y_train, x_test, y_test)

print "train model successfully!"
コード例 #16
0
#!usr/bin/env/python 
# -*- coding: utf-8 -*-
import numpy as np
import os
from myNeurolNetworkModel import MyNeurolNetworkModel
order ={"0":"Open","1":"High","2":"Low","3":"Close","4":"Volume*e-6"}
yahooData = np.load('yahoo_finance5.npy')
Open,High,Low,Close,Volume = np.hsplit(yahooData,5)

shape = yahooData.shape
print("shape = ",shape)
print("-"*80)

print("Close shape = ",Close.shape)

myNNmodel = MyNeurolNetworkModel()
kdj = myNNmodel.calculate_kdj(yahooData)    #(None,3)
print("kdj = ",kdj.shape)

declose = myNNmodel.calculate_dclose(Close)  #(None,4)
print("declose = ",declose.shape)

logfit = myNNmodel.calculate_logfit(Close)   #(None,1)
print("logfit = ",logfit.shape)

closeExponent = myNNmodel.calculate_exponent(Close,exponent = 0.9) #(None,1)
print("closeExponent = ",closeExponent.shape)


from sklearn.decomposition import PCA
pca = PCA(n_components = 2)
コード例 #17
0
#!usr/bin/env/python 
# -*- coding: utf-8 -*-
import numpy as np
import os
from myNeurolNetworkModel import MyNeurolNetworkModel

myNNmodel = MyNeurolNetworkModel()

v = myNNmodel.random_vector(10,100)
print("v = ",v.shape)
yahooData = np.load('yahoo_finance5.npy')

print("-"*100)
sample =  yahooData[v]
print("sample.shape = ",sample.shape)