def closure( filenames, plot, treename="photonJetTree" ): commonCut = "[email protected]() && [email protected]()" #commonCut = "1" leptonPtCut = 15 # only larger than 15 make sense here, since this is the reprocessing cut commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format(leptonPtCut) totalHist = getHists( filenames, plot, cut=commonCut, treeName=treename ) gGenHist = getHists( filenames, plot, cut="photons[0].isGen(0) && "+commonCut, treeName=treename ) eGenHist = getHists( filenames, plot, cut="photons[0].isGen(1) && "+commonCut, treeName=treename ) gGenHist.SetLineColor(2) eGenHist.SetLineColor(3) gDatasetAbbrs = [getDatasetAbbr(f) for f in filenames ] gDatasetAbbrs = mergeDatasetAbbr( gDatasetAbbrs ) multihisto = Multihisto() multihisto.leg.SetHeader( "/".join([ datasetToLatex(x) for x in gDatasetAbbrs]) ) multihisto.addHisto( totalHist, "Simulation", draw="e0 hist" ) multihisto.addHisto( gGenHist, "gen #gamma", toStack=True, draw="e0 hist" ) multihisto.addHisto( eGenHist, "gen e", toStack=True, draw="e0 hist" ) infoText = ROOT.TLatex(0.03,.96, "CMS Private Work - 8TeV #geq1#gamma,#geq2jets" ) infoText.SetNDC() can = ROOT.TCanvas() can.cd() multihisto.Draw() infoText.Draw() r = Ratio( "Sim./Pred.", totalHist, multihisto.stack.GetStack().Last() ) r.draw(0,2) SaveAs( can, "genMatches_%s_%s"%(getSaveNameFromDatasets(filenames), plot)) ROOT.SetOwnership( can, False ) del can
def compareFiles( plot, filenames, treename, diff ): tree1 = readTree( filenames[0], treename ) tree2 = readTree( filenames[1], treename ) if diff: cut1, cut2 = getEventNumberDiff( tree1, tree2 ) tree1 = getTreeFriendsWithBooleanVariable( tree1, cut1) tree2 = getTreeFriendsWithBooleanVariable( tree2, cut2) h1 = createHistoFromTree( tree1, plot, "x" ) h2 = createHistoFromTree( tree2, plot, "x" ) else: h1 = getHisto( tree1, plot, weight="1" ) h2 = getHisto( tree2, plot, weight="1" ) mini = min(h1.GetBinLowEdge(1), h2.GetBinLowEdge(1)) maxi = max(h2.GetBinLowEdge(h2.GetNbinsX()+2), h1.GetBinLowEdge(h1.GetNbinsX()+2)) h1 = getHisto( tree1, plot, weight="1", firstBin=mini, lastBin=maxi ) h2 = getHisto( tree2, plot, weight="1", firstBin=mini, lastBin=maxi ) h2.SetLineColor(2) mh = Multihisto() name1 = getVersion(filenames[0]) name2 = getVersion(filenames[1]) mh.addHisto( h1, name1, draw="hist e" ) mh.addHisto( h2, name2, draw="hist e" ) mh.Draw() from myRatio import Ratio r = Ratio( "%s/%s"%(name1,name2), h1, h2 ) r.draw() plot ="test" ROOT.gPad.GetCanvas().SaveAs( "compareFiles_%s.pdf"%plot )
def closure(filenames, plot): commonCut = "[email protected]() && [email protected]()" #if plot != "met": commonCut += " && met>=100" gHist = getHists(filenames, plot, cut="(photons[0].isStatus(1)) && " + commonCut) eHist = multiDimFakeRate(filenames, plot, commonCut, isData=False) gHist.SetName("gHist") eHist.SetName("eHist") eHistSys = eHist.Clone("eHistSys") eHistSys = setRelativeUncertainty(eHistSys, 0.11) eHistSys.SetFillColor(eHistSys.GetLineColor()) eHistSys.SetFillStyle(3354) eHistSys.SetMarkerSize(0) eHistSys.SetName("eHistSys") gDatasetAbbrs = [getDatasetAbbr(f) for f in filenames] gDatasetAbbrs = mergeDatasetAbbr(gDatasetAbbrs) multihisto = Multihisto() multihisto.leg = myLegend(.63, .75, .96, .94) multihisto.leg.SetTextSize(0.035) multihisto.leg.SetTextFont(42) multihisto.leg.SetHeader(",".join( [datasetToLatex(x) for x in gDatasetAbbrs])) multihisto.addHisto(gHist, "Direct Simulation", draw="p e x0") multihisto.addHisto(eHist, "", draw="hist") multihisto.addHisto(eHistSys, "Prediction", draw="e2") infoText = ROOT.TLatex() infoText.SetNDC() infoText.SetTextFont(gHist.GetLabelFont()) infoText.SetTextSize(gHist.GetLabelSize()) infoText.SetText( .02, .96, "CMS Simulation 19.7fb^{-1} (8 TeV) #geq1#gamma,#geq2jets" ) can = ROOT.TCanvas("c1", "", 600, 600) can.cd() multihisto.Draw() infoText.Draw() r = Ratio("Direct/Pred.", gHist, eHist, eHistSys) r.draw(0, 2) SaveAs(can, "ewkClosure_%s_%s" % (getSaveNameFromDatasets(filenames), plot)) ROOT.gPad.SaveAs("plots/ewkClosure_%s_%s.C" % (getSaveNameFromDatasets(filenames), plot)) ewkOut = ROOT.TFile("ewkOout.root", "recreate") ewkOut.cd() for h in gHist, eHist, eHistSys: h.Write() ewkOut.Close() ROOT.SetOwnership(can, False) del can
def compareFiles(plot, filenames, treename, diff): tree1 = readTree(filenames[0], treename) tree2 = readTree(filenames[1], treename) if diff: cut1, cut2 = getEventNumberDiff(tree1, tree2) tree1 = getTreeFriendsWithBooleanVariable(tree1, cut1) tree2 = getTreeFriendsWithBooleanVariable(tree2, cut2) h1 = createHistoFromTree(tree1, plot, "x") h2 = createHistoFromTree(tree2, plot, "x") else: h1 = getHisto(tree1, plot, weight="1") h2 = getHisto(tree2, plot, weight="1") mini = min(h1.GetBinLowEdge(1), h2.GetBinLowEdge(1)) maxi = max(h2.GetBinLowEdge(h2.GetNbinsX() + 2), h1.GetBinLowEdge(h1.GetNbinsX() + 2)) h1 = getHisto(tree1, plot, weight="1", firstBin=mini, lastBin=maxi) h2 = getHisto(tree2, plot, weight="1", firstBin=mini, lastBin=maxi) h2.SetLineColor(2) mh = Multihisto() name1 = getVersion(filenames[0]) name2 = getVersion(filenames[1]) mh.addHisto(h1, name1, draw="hist e") mh.addHisto(h2, name2, draw="hist e") mh.Draw() from myRatio import Ratio r = Ratio("%s/%s" % (name1, name2), h1, h2) r.draw() plot = "test" ROOT.gPad.GetCanvas().SaveAs("compareFiles_%s.pdf" % plot)
def closure(filenames, plot): commonCut = "[email protected]() && [email protected]()" # if plot != "met": commonCut += " && met>=100" gHist = getHists(filenames, plot, cut="(photons[0].isStatus(1)) && " + commonCut) eHist = multiDimFakeRate(filenames, plot, commonCut, isData=False) gHist.SetName("gHist") eHist.SetName("eHist") eHistSys = eHist.Clone("eHistSys") eHistSys = setRelativeUncertainty(eHistSys, 0.11) eHistSys.SetFillColor(eHistSys.GetLineColor()) eHistSys.SetFillStyle(3354) eHistSys.SetMarkerSize(0) eHistSys.SetName("eHistSys") gDatasetAbbrs = [getDatasetAbbr(f) for f in filenames] gDatasetAbbrs = mergeDatasetAbbr(gDatasetAbbrs) multihisto = Multihisto() multihisto.leg = myLegend(0.63, 0.75, 0.96, 0.94) multihisto.leg.SetTextSize(0.035) multihisto.leg.SetTextFont(42) multihisto.leg.SetHeader(",".join([datasetToLatex(x) for x in gDatasetAbbrs])) multihisto.addHisto(gHist, "Direct Simulation", draw="p e x0") multihisto.addHisto(eHist, "", draw="hist") multihisto.addHisto(eHistSys, "Prediction", draw="e2") infoText = ROOT.TLatex() infoText.SetNDC() infoText.SetTextFont(gHist.GetLabelFont()) infoText.SetTextSize(gHist.GetLabelSize()) infoText.SetText( 0.02, 0.96, "CMS Simulation 19.7fb^{-1} (8 TeV) #geq1#gamma,#geq2jets" ) can = ROOT.TCanvas("c1", "", 600, 600) can.cd() multihisto.Draw() infoText.Draw() r = Ratio("Direct/Pred.", gHist, eHist, eHistSys) r.draw(0, 2) SaveAs(can, "ewkClosure_%s_%s" % (getSaveNameFromDatasets(filenames), plot)) ROOT.gPad.SaveAs("plots/ewkClosure_%s_%s.C" % (getSaveNameFromDatasets(filenames), plot)) ewkOut = ROOT.TFile("ewkOout.root", "recreate") ewkOut.cd() for h in gHist, eHist, eHistSys: h.Write() ewkOut.Close() ROOT.SetOwnership(can, False) del can
def drawClosure(filenames, predFilenames, plot, commonCut, infoText, additionalLabel="", modifyEmptyBins=True): infoText = ROOT.TLatex( 0, .96, "CMS Private Work 19.7fb^{-1} #sqrt{s}=8TeV #geq1#gamma,#geq2jets") infoText.SetNDC() infoText.SetTextSize(0.045) gHist = getHists(filenames, plot, commonCut) fHist, sysHist = predictionHistos(predFilenames, plot, commonCut, modifyEmptyBins) fHist.SetMarkerSize(0) sysHist.SetFillStyle(3254) sysHist.SetFillColor(sysHist.GetLineColor()) sysHist.SetLineColor(0) signalAbbrs = mergeDatasetAbbr([getDatasetAbbr(x) for x in filenames]) muhisto = Multihisto() muhisto.leg.SetHeader(",".join([datasetToLatex(x) for x in signalAbbrs])) muhisto.addHisto(gHist, "Simulation", draw="") muhisto.addHisto(fHist, "Prediction", draw="hist e") muhisto.addHisto(sysHist, "syst. uncert", draw="e2") muhisto.addHisto(gHist, "", draw="e0") ## add a second time to draw on top can = ROOT.TCanvas("", "", 1000, 1200) can.cd() muhisto.Draw() from myRatio import Ratio r = Ratio("Sim./Pred.", gHist, fHist, sysHist) r.draw(0., 2) infoText.Draw() muhisto.leg.AddEntry(r.totalUncert, "total uncert", "f") muhisto.leg.Draw() SaveAs(can, "qcdClosure_%s_%s" % ("".join(signalAbbrs) + additionalLabel, plot)) # Since root is too stupid to clear the canvas before python is ending, clean # the canvas yourself ROOT.SetOwnership(can, False) del can
def closure( filenames, plot ): leptonPtCut = 15 # only larger than 15 make sense here, since this is the reprocessing cut commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format(leptonPtCut) #commonCut = "1" totalHist = getHists( filenames, plot, cut=commonCut ) gGenHist = getHists( filenames, plot, cut="photons[0].isGen(0) && "+commonCut ) eHist = multiDimFakeRate( filenames, plot, commonCut, False ) fakeHist = predictionHistos( filenames, plot, cut=commonCut )[0] fakeHist.SetLineColor(4) eHist.SetLineColor(3) gGenHist.SetLineColor(2) eHistSys = eHist.Clone( randomName() ) eHistSys = setRelativeUncertainty( eHistSys, 0.11 ) eHistSys.SetFillColor( eHistSys.GetLineColor() ) eHistSys.SetFillStyle(3354) eHistSys.SetMarkerSize(0) gDatasetAbbrs = [getDatasetAbbr(f) for f in filenames ] gDatasetAbbrs = mergeDatasetAbbr( gDatasetAbbrs ) multihisto = Multihisto() multihisto.setMinimum(0.01) multihisto.setMaximum(20) multihisto.leg.SetHeader( "/".join([ datasetToLatex(x) for x in gDatasetAbbrs]) ) multihisto.addHisto( totalHist, "Simulation", draw="e0 hist" ) multihisto.addHisto( fakeHist, "QCD", toStack=True, draw="hist" ) multihisto.addHisto( gGenHist, "gen#gamma", toStack=True, draw="e0 hist" ) multihisto.addHisto( eHist, "e#rightarrow#gamma", toStack=True, draw="hist" ) infoText = ROOT.TLatex(0.03,.96, "CMS Private Work - 8TeV #geq1#gamma,#geq2jets" ) infoText.SetNDC() can = ROOT.TCanvas() can.cd() multihisto.Draw() infoText.Draw() r = Ratio( "Sim./Pred.", totalHist, multihisto.stack.GetStack().Last() ) r.draw(0,2) SaveAs( can, "ewkPrediction_%s_%s"%(getSaveNameFromDatasets(filenames), plot)) ROOT.SetOwnership( can, False ) del can
def drawClosure( plot, gTree, foTree, cut, can, info, datasetAbbr, additionalInfo="" ): # The first attempt to get the histogram is only to get the minimal # and maximal value on the x-axis, for not predefined binning h_gamma = getHisto( gTree, plot,cut=cut ) h_fo = getHisto( foTree, plot, cut=cut ) xMin, xMax = getXMinXMax( [ h_gamma, h_fo ] ) h_gamma = getHisto( gTree, plot, cut=cut, color=1, firstBin=xMin,lastBin=xMax ) h_fo = getHisto( foTree, plot, cut=cut, weight="weight*w_qcd", color=46, firstBin=xMin,lastBin=xMax ) h_fo_error = getQCDErrorHisto( foTree, plot, cut=cut, firstBin=xMin, lastBin=xMax ) h_fo_error.SetFillColor( h_fo.GetLineColor() ) h_fo_error.SetLineColor( h_fo_error.GetLineColor() ) h_fo_error.SetFillStyle(3254) h_fo_error.SetMarkerSize(0) muhisto = Multihisto() muhisto.leg.SetHeader( datasetToLatex( datasetAbbr ) ) muhisto.addHisto( h_gamma, "#gamma", draw="hist e0" ) muhisto.addHisto( h_fo, "#gamma_{jet}#upointw", draw="hist e0") muhisto.addHisto( h_fo_error, "#sigma_{w}", draw="e2") hPad = ROOT.TPad("hPad", "Histogram", 0, 0.2, 1, 1) hPad.cd() muhisto.Draw() ratioPad = ROOT.TPad("ratioPad", "Ratio", 0, 0, 1, 0.2) ratioPad.cd() ratioPad.SetLogy( False ) from myRatio import Ratio r = Ratio( "#gamma/#gamma_{pred}", h_gamma, h_fo ) ratio, sys, one = r.draw(0,2) ratio.Draw("e1") sys.Draw("same e2") one.Draw() can.cd() hPad.Draw() ratioPad.Draw() info.Draw() SaveAs(can, "qcd_afterWeighting_%s_%s_%s"%(datasetAbbr+additionalInfo, plot,reweightVar) ) ROOT.SetOwnership( hPad, False ) ROOT.SetOwnership( ratioPad, False )
def compareTrees( plot="photons.pt", filename="slimQCD_V02.28_tree.root" ): label, unit, binning = readAxisConf( "photons[0].ptJet()" ) #binning = range(0,70,10) + binning #binning = range(0,1000, 30 ) import array gH = ROOT.TH1F( randomName(), ";jet_{x};", len(binning)-1, array.array('d', binning) ) fH = gH.Clone( randomName() ) fH.SetLineColor(2) fH.SetMarkerColor(2) #cut = "!photons[0].isGen(0)" #cut = "1" gTree = readTree( filename, "photonTree" ) fTree = readTree( filename, "photonJetTree" ) #gH = getHisto( gTree, plot, color=1, cut=cut,firstBin=0,lastBin=1400 ) #fH = getHisto( fTree, plot, color=2, cut=cut,firstBin=0,lastBin=1400 ) for h, tree in [(gH, gTree), (fH, fTree)]: h.Sumw2() for event in tree: h.Fill( getFromEvent( event ), event.weight ) for h in [gH, fH]: h.Scale( 1, "width" ) mh = Multihisto() mh.addHisto( gH, "#gamma", draw="hist e" ) mh.addHisto( fH, "#gamma_{jet}", draw="hist e" ) can = ROOT.TCanvas() can.cd() mh.Draw() from myRatio import Ratio r = Ratio( "#gamma/#gamma_{jet}", gH, fH ) r.draw(None,2) SaveAs( can, "compare_test" )
def compareHists( filenames, tight, fcut, draw=False ): loose = getHistoFromFiles( "met", "photonJetTree", filenames, fcut ) loose.SetLineColor(2) if loose.Integral(0,loose.FindBin(99)): loose.Scale( tight.Integral(0,loose.FindBin(99)) / loose.Integral(0,loose.FindBin(99)) ) option = "uu norm" if filenames[0].startswith("PhotonHad") else "ww" if draw: c = ROOT.TCanvas() c.cd() mh = Multihisto() mh.addHisto( tight.Clone( randomName() ), "#gamma_{tight}", draw="hist e") mh.addHisto( loose, "#gamma_{loose}", draw="hist e") mh.Draw() from myRatio import Ratio r = Ratio( "#gamma_{tight}/#gamma_{loose}", tight, loose ) r.draw(0,2) c.SaveAs("plots/findFoId_%s_twoDistributions_%s.pdf"%(getSaveNameFromDatasets(filenames),''.join([s for s in fcut if s.isdigit()])) ) return tight.Chi2Test( loose, option )
def compareTrees(plot="photons.pt", filename="slimQCD_V02.28_tree.root"): label, unit, binning = readAxisConf("photons[0].ptJet()") #binning = range(0,70,10) + binning #binning = range(0,1000, 30 ) import array gH = ROOT.TH1F(randomName(), ";jet_{x};", len(binning) - 1, array.array('d', binning)) fH = gH.Clone(randomName()) fH.SetLineColor(2) fH.SetMarkerColor(2) #cut = "!photons[0].isGen(0)" #cut = "1" gTree = readTree(filename, "photonTree") fTree = readTree(filename, "photonJetTree") #gH = getHisto( gTree, plot, color=1, cut=cut,firstBin=0,lastBin=1400 ) #fH = getHisto( fTree, plot, color=2, cut=cut,firstBin=0,lastBin=1400 ) for h, tree in [(gH, gTree), (fH, fTree)]: h.Sumw2() for event in tree: h.Fill(getFromEvent(event), event.weight) for h in [gH, fH]: h.Scale(1, "width") mh = Multihisto() mh.addHisto(gH, "#gamma", draw="hist e") mh.addHisto(fH, "#gamma_{jet}", draw="hist e") can = ROOT.TCanvas() can.cd() mh.Draw() from myRatio import Ratio r = Ratio("#gamma/#gamma_{jet}", gH, fH) r.draw(None, 2) SaveAs(can, "compare_test")
def drawTwoHists( gHist, fHist, sHist, saveName, minmax ): for bin in range( sHist.GetNbinsX()+2 ): sHist.SetBinError( bin, sHist.GetBinContent(bin) ) sHist.SetBinContent( bin, fHist.GetBinContent(bin) ) sHist.SetFillColor( sHist.GetLineColor() ) sHist.SetLineColor( sHist.GetLineColor() ) sHist.SetFillStyle(3254) sHist.SetMarkerSize(0) fHist.SetLineColor(2) sHist.SetLineColor(2) for h in gHist, fHist, sHist: from inheritRoot import H1F h.__class__ = H1F h.MergeOverflow() h.Scale(1., "width") muhisto = Multihisto() muhisto.addHisto( gHist, "Simulation", draw="hist e" ) muhisto.addHisto( fHist, "Prediction", draw="hist") muhisto.addHisto( sHist, "#sigma_{w}", draw="e2") can = ROOT.TCanvas(randomName(), "", 1000, 1200) can.cd() muhisto.Draw() text = ROOT.TLatex(.1,.965, "%i #leq p_{T^{*}} < %i, %i #leq H_{T} < %i"%minmax) text.SetNDC() text.Draw() from myRatio import Ratio r = Ratio( "Sim./Pred.", gHist, fHist ) r.draw(0,2) can.SaveAs(saveName+".pdf") ROOT.SetOwnership( can, False ) del can
def drawClosure( filenames, predFilenames, plot, commonCut, infoText, additionalLabel="", modifyEmptyBins=True ): infoText = ROOT.TLatex(0,.96, "CMS Private Work 19.7fb^{-1} #sqrt{s}=8TeV #geq1#gamma,#geq2jets" ) infoText.SetNDC() infoText.SetTextSize(0.045) gHist = getHists( filenames, plot, commonCut ) fHist, sysHist = predictionHistos( predFilenames, plot, commonCut, modifyEmptyBins ) fHist.SetMarkerSize(0) sysHist.SetFillStyle(3254) sysHist.SetFillColor( sysHist.GetLineColor() ) sysHist.SetLineColor(0) signalAbbrs = mergeDatasetAbbr( [ getDatasetAbbr(x) for x in filenames ] ) muhisto = Multihisto() muhisto.leg.SetHeader( ",".join( [ datasetToLatex(x) for x in signalAbbrs ] ) ) muhisto.addHisto( gHist, "Simulation", draw="" ) muhisto.addHisto( fHist, "Prediction", draw="hist e") muhisto.addHisto( sysHist, "syst. uncert", draw="e2") muhisto.addHisto( gHist, "", draw="e0" ) ## add a second time to draw on top can = ROOT.TCanvas("", "", 1000, 1200) can.cd() muhisto.Draw() from myRatio import Ratio r = Ratio( "Sim./Pred.", gHist, fHist, sysHist ) r.draw(0.,2) infoText.Draw() muhisto.leg.AddEntry( r.totalUncert, "total uncert", "f" ) muhisto.leg.Draw() SaveAs(can, "qcdClosure_%s_%s"%("".join(signalAbbrs)+additionalLabel, plot) ) # Since root is too stupid to clear the canvas before python is ending, clean # the canvas yourself ROOT.SetOwnership( can, False ) del can
def drawTwoHists(gHist, fHist, sHist, saveName, minmax): for bin in range(sHist.GetNbinsX() + 2): sHist.SetBinError(bin, sHist.GetBinContent(bin)) sHist.SetBinContent(bin, fHist.GetBinContent(bin)) sHist.SetFillColor(sHist.GetLineColor()) sHist.SetLineColor(sHist.GetLineColor()) sHist.SetFillStyle(3254) sHist.SetMarkerSize(0) fHist.SetLineColor(2) sHist.SetLineColor(2) for h in gHist, fHist, sHist: from inheritRoot import H1F h.__class__ = H1F h.MergeOverflow() h.Scale(1., "width") muhisto = Multihisto() muhisto.addHisto(gHist, "Simulation", draw="hist e") muhisto.addHisto(fHist, "Prediction", draw="hist") muhisto.addHisto(sHist, "#sigma_{w}", draw="e2") can = ROOT.TCanvas(randomName(), "", 1000, 1200) can.cd() muhisto.Draw() text = ROOT.TLatex(.1, .965, "%i #leq p_{T^{*}} < %i, %i #leq H_{T} < %i" % minmax) text.SetNDC() text.Draw() from myRatio import Ratio r = Ratio("Sim./Pred.", gHist, fHist) r.draw(0, 2) can.SaveAs(saveName + ".pdf") ROOT.SetOwnership(can, False) del can
def compareTrees( plot="met", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False ): cut = "1" fcut = cut fcut += "&& photons[0].chargedIso/10<2.6 && photons[0].neutralIso/10<3.5+0.04*photons[0].pt && photonIso/10<1.3+0.005*photons[0].pt" fcut += "&& photons[0].chargedIso*10>2.6 && photons[0].neutralIso*10>3.5+0.04*photons[0].pt && photonIso*10>1.3+0.005*photons[0].pt" gH = getHistoFromFiles( plot, "photonTree", filenames, cut ) fH = getHistoFromFiles( plot, "photonJetTree", filenames, fcut, color=1 ) #fH = getHistoFromFiles( plot, "photonTree", filenames, cut+"&& fabs(photons[0].eta)>=%s"%etaCut ) ratio = gH.Clone( randomName() ) ratio.Divide( fH ) ratio.SetYTitle( "#gamma_{tight}/#gamma_{loose}" ) can = ROOT.TCanvas() can.SetLogy(0) can.cd() ratio.Draw(" e") pc1 = ROOT.TLatex(0,.96, "CMS Private Work") pc2 = ROOT.TLatex( .42,.96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}#, #geq1#ggamma(#geq1#fgamma),#geq2#text{jets}") for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio( "#gamma/#gamma_{jet}", gH, fH ) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad( "ratioCompare2_%s_%s"%(plot,shortName( filenames )) )
def compareTrees( plot="photons.pt", filename="slimAllQCD_V02.28_tree.root" ): label, unit, binning = readAxisConf( "ht" ) import array fH = ROOT.TH1F( randomName(), ";%s;"%label, len(binning)-1, array.array('d', binning) ) fH.SetLineColor(2) fH.SetMarkerColor(2) fH.Sumw2() #cut = "!photons[0].isGen(0)" cut = "1" gTree = readTree( filename, "photonTree" ) fTree = readTree( filename, "photonJetTree" ) gH = getHisto( gTree, "ht", color=1, cut=cut,firstBin=0,lastBin=1400 ) #fH = getHisto( fTree, plot, color=2, cut=cut,firstBin=0,lastBin=1400 ) for event in fTree: fH.Fill( getFromEvent( event ) ) for h in [gH, fH]: h.Scale( 1./h.Integral() ) mh = Multihisto() mh.addHisto( gH, "new", draw="hist e" ) mh.addHisto( fH, "old (recalculated)", draw="hist e" ) can = ROOT.TCanvas() can.cd() mh.Draw() from myRatio import Ratio r = Ratio( "#gamma/#gamma_{jet}", gH, fH ) r.draw(0,2) SaveAs( can, "compare_%s_norm"%plot )
def compareTrees(plot="met", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False): cut = "1" fcut = cut fcut += "&& photons[0].chargedIso/10<2.6 && photons[0].neutralIso/10<3.5+0.04*photons[0].pt && photonIso/10<1.3+0.005*photons[0].pt" fcut += "&& photons[0].chargedIso*10>2.6 && photons[0].neutralIso*10>3.5+0.04*photons[0].pt && photonIso*10>1.3+0.005*photons[0].pt" gH = getHistoFromFiles(plot, "photonTree", filenames, cut) fH = getHistoFromFiles(plot, "photonJetTree", filenames, fcut, color=1) #fH = getHistoFromFiles( plot, "photonTree", filenames, cut+"&& fabs(photons[0].eta)>=%s"%etaCut ) ratio = gH.Clone(randomName()) ratio.Divide(fH) ratio.SetYTitle("#gamma_{tight}/#gamma_{loose}") can = ROOT.TCanvas() can.SetLogy(0) can.cd() ratio.Draw(" e") pc1 = ROOT.TLatex(0, .96, "CMS Private Work") pc2 = ROOT.TLatex( .42, .96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}#, #geq1#ggamma(#geq1#fgamma),#geq2#text{jets}" ) for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio("#gamma/#gamma_{jet}", gH, fH) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad("ratioCompare2_%s_%s" % (plot, shortName(filenames)))
def drawComparison( histName, mc, data ): hdata = getIsolationHist( data, histName ) hdata.SetLineColor(1) hmc = getIsolationHist( mc, histName ) hmc.SetLineColor(2) for h in hmc, hdata: h.SetLineWidth(2) hmc.Scale( hdata.Integral() / hmc.Integral() ) mh = Multihisto() mh.addHisto( hdata, "Data", draw="e0" ) mh.addHisto( hmc, "MC", draw="hist", toStack=True ) c = ROOT.TCanvas() mh.Draw() from myRatio import Ratio r = Ratio( "Data/Bkg", hdata, hmc ) r.draw(0,2) SavePad("isolationComparison_%s"%histName )
def compareTrees(plot="photons.pt", filename="slimAllQCD_V02.28_tree.root"): label, unit, binning = readAxisConf("ht") import array fH = ROOT.TH1F(randomName(), ";%s;" % label, len(binning) - 1, array.array('d', binning)) fH.SetLineColor(2) fH.SetMarkerColor(2) fH.Sumw2() #cut = "!photons[0].isGen(0)" cut = "1" gTree = readTree(filename, "photonTree") fTree = readTree(filename, "photonJetTree") gH = getHisto(gTree, "ht", color=1, cut=cut, firstBin=0, lastBin=1400) #fH = getHisto( fTree, plot, color=2, cut=cut,firstBin=0,lastBin=1400 ) for event in fTree: fH.Fill(getFromEvent(event)) for h in [gH, fH]: h.Scale(1. / h.Integral()) mh = Multihisto() mh.addHisto(gH, "new", draw="hist e") mh.addHisto(fH, "old (recalculated)", draw="hist e") can = ROOT.TCanvas() can.cd() mh.Draw() from myRatio import Ratio r = Ratio("#gamma/#gamma_{jet}", gH, fH) r.draw(0, 2) SaveAs(can, "compare_%s_norm" % plot)
def compareHists(filenames, tight, fcut, draw=False): loose = getHistoFromFiles("met", "photonJetTree", filenames, fcut) loose.SetLineColor(2) if loose.Integral(0, loose.FindBin(99)): loose.Scale( tight.Integral(0, loose.FindBin(99)) / loose.Integral(0, loose.FindBin(99))) option = "uu norm" if filenames[0].startswith("PhotonHad") else "ww" if draw: c = ROOT.TCanvas() c.cd() mh = Multihisto() mh.addHisto(tight.Clone(randomName()), "#gamma_{tight}", draw="hist e") mh.addHisto(loose, "#gamma_{loose}", draw="hist e") mh.Draw() from myRatio import Ratio r = Ratio("#gamma_{tight}/#gamma_{loose}", tight, loose) r.draw(0, 2) c.SaveAs("plots/findFoId_%s_twoDistributions_%s.pdf" % (getSaveNameFromDatasets(filenames), ''.join( [s for s in fcut if s.isdigit()]))) return tight.Chi2Test(loose, option)
def compareTrees(plot="met", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False): #cut = "@electrons.size()==0 && @muons.size()==0" #cut = plot+">110" #cut = "!photons[0].isGen(0)" #cut = "ht < 600" cut = "1" gH = getHistoFromFiles(plot, "photonTree", filenames, "1") fH = getHistoFromFiles(plot, "photonJetTree", filenames, "1", color=2) for h in [gH, fH]: #h.Scale( 1./h.Integral() ) h.SetMarkerSize(0) h.GetXaxis().SetTitleOffset(1.03) h.GetYaxis().SetTitleOffset(1.5) h.GetXaxis().SetLabelSize(0.0633790992496425) h.GetXaxis().SetTitleSize(0.0633790992496425) h.GetYaxis().SetLabelSize(0.0633790992496425) h.GetYaxis().SetTitleSize(0.0633790992496425) h.GetYaxis().SetLabelOffset(0) if plot == "photons[0].pt": h.GetXaxis().SetTitle("$p_{T}$ [GeV]") if plot == "photons[0].ptJet()": h.GetXaxis().SetTitle("$p_{T^*}$ [GeV]") ratio = gH.Clone(randomName()) ratio.Divide(fH) mh = Multihisto() #mh.leg.SetX1(0.608) #mh.leg.SetX2(0.95) mh.addHisto(gH, "#gamma_{#text{tight}}", draw="hist e") mh.addHisto(fH, "#gamma_{#text{loose}}", draw="hist e") can = ROOT.TCanvas() #can.SetBottomMargin(0) #can.SetTopMargin(0) #can.SetRightMargin(0) #can.SetLeftMargin(0.19) can.cd() mh.Draw() pc1 = ROOT.TLatex(0, .96, "CMS Private Work") pc2 = ROOT.TLatex(.51, .96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}") for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio("#gamma/#gamma_{jet}", gH, fH) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad("compare2_%s_%s" % ("test", shortName(filenames))) #ROOT.gPad.SaveAs("~/master/documents/thesis/plots/compare_%s_%s.tex"%(manipulateSaveName(plot),shortName( filenames )) ) ROOT.SetOwnership(can, False)
def finalDistributionData( plot ): # Sample names treeVersion = "31" wg = [ "slimWGamma_50_130_V03.%s_tree.root"%treeVersion, \ "slimWGamma_130_inf_V03.%s_tree.root"%treeVersion ] tg = [ "slimTTGamma_V03.%s_tree.root"%treeVersion ] zgn = [ "slimZGammaNuNu_V03.%s_tree.root"%treeVersion ] zgll = [ "slimZGammaLL_V02.19b_tree.root" ] data = [ "PhotonHad%s_V03.%s_tree.root"%(x,treeVersion) for x in ["A","B","C","D" ] ] # additional ISR uncertainty ewkUncertainty = 0.11 isrUncertaintyZ = 0.5 isrUncertaintyW = 0.5 isrUncertaintyT = 0.5 isrUncertainty = 0.5 leptonPtCut = 25 # only larger than 15 make sense here, since this is the reprocessing cut #commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format(leptonPtCut) commonCut = "[email protected]() && [email protected]() && thisPt>0 && recoilChr > 0" # Compute the weights: weight2D = getMixedWeigthHisto( data, data, commonCut ) attachWeightsToFiles( data, weight2D, "foWeights" ) drawWeightHisto( weight2D, "Data", writeWeightFile=True ) # Get Histograms dataHist = getHists( data, plot, commonCut ) fgammaHist, fgammaWeightError = predictionHistos( data, plot, commonCut, modifyEmptyBins=False ) egammaHist = multiDimFakeRate( data, plot, commonCut ) egammaHistsys = setRelativeUncertainty( egammaHist.Clone(randomName()), ewkUncertainty ) fsrZ = getHists( zgn, plot, commonCut+"&&genPhotons[0].pt>130" ) fsrZll = getHists( zgll, plot, commonCut ) if plot=="met": fsrZ2 = getHists( zgll, plot+"LL", commonCut+"&&genPhotons[0].pt<130" ) else: fsrZ2 = getHists( zgll, plot, commonCut+"&&0" ) fsrZ2.Scale( 20./(2.*3.363) ) fsrW = getHists( wg, plot, commonCut ) fsrT = getHists( tg, plot, commonCut ) # apply common scale factor for h in fsrW, fsrT, fsrZ, fsrZ2, fsrZll: h.Scale(1.5) fsr = addHistos( [fsrT, fsrW, fsrZ, fsrZ2,fsrZll ] ) fsr.SetLineColor(ROOT.kRed) fsrSys = setRelativeUncertainty( fsr, isrUncertainty ) #signal1 = getMetHisto( "W", 900, 1720 ) #signal2 = getMetHisto( "B", 1700, 1120 ) signal1 = getHists( ["slimW_1700_720_375_V03.06_tree.root"], plot, commonCut ) signal2 = getHists( ["slimW_900_1720_375_V03.06_tree.root"], plot, commonCut ) signal3 = getHists( ["slimB_1300_1720_375_V03.06_tree.root"], plot, commonCut ) signal4 = getHists( ["slimB_1700_1120_375_V03.06_tree.root"], plot, commonCut ) for i, signal in enumerate([signal1, signal2, signal3, signal4]): signal.SetLineColor( ROOT.kGreen + i ) signal.SetLineColor( ROOT.kBlue + i ) #signal.SetLineStyle(5+i) # prettify histograms fgammaHist.SetLineColor(7) egammaHist.SetLineColor( 3 ) fsrZ.SetLineColor( ROOT.kRed-7 ) fsrW.SetLineColor( ROOT.kRed-9 ) fsrT.SetLineColor( ROOT.kRed ) mh = Multihisto() mh.setMinimum(0.2) mh.orderByIntegral = False mh.addHisto( fsr, "ISR", True ) mh.addHisto( egammaHist, "e#rightarrow#gamma", True ) mh.addHisto( fgammaHist, "Multijet", True ) dataLegName = "Data" mh.addHisto( dataHist, dataLegName, draw="pe x0" ) mh.addHisto( signal2, "Bino-like #chi_{1}^{0}", draw="hist" ) mh.addHisto( signal1, "Wino-like #chi_{1}^{0}", draw="hist" ) # get all SYSTEMATICAL uncertainties: systematicUncertHistStack = ROOT.THStack() systematicUncertHistStack.Add( fgammaWeightError ) systematicUncertHistStack.Add( egammaHistsys ) systematicUncertHistStack.Add( fsrSys ) if plot == "met": writeDataCard( treeVersion, dataHist, fgammaHist, fgammaWeightError, egammaHist, egammaHistsys, fsr, fsrSys ) # draw stuff luminosity = 19.7 infoText = ROOT.TLatex(0,.96, "CMS Private Work - %sfb^{-1} #sqrt{s}=8TeV #geq1#gamma_{tight},#geq2jets"%luminosity ) infoText.SetNDC() infoText.SetTextSize(.04) can = ROOT.TCanvas() mh.Draw() statUncert = mh.stack.GetStack().Last().Clone( randomName() ) systUncert = systematicUncertHistStack.GetStack().Last().Clone( randomName() ) totalUncert = statUncert.Clone( randomName() ) for bin in range( totalUncert.GetNbinsX()+2 ): totalUncert.SetBinError( bin, statUncert.GetBinError(bin) |qPlus| systUncert.GetBinError(bin) ) for h in statUncert, systUncert, totalUncert: h.SetMarkerSize(0) totalUncert.SetFillStyle(3002) totalUncert.SetFillColor(1) totalUncert.Draw("same e2") systUncert.SetFillStyle(3254) systUncert.SetFillColor(2) systUncert.Draw("same e2") statUncert.SetLineWidth(3) statUncert.SetLineColor(2) statUncert.Draw("same e x0") dataHist.Draw("same pe x0") from myRatio import Ratio r = Ratio( "Data / Bkg", dataHist, mh.stack.GetStack().Last(), systematicUncertHistStack.GetStack().Last() ) r.draw(.5,1.5) infoText.Draw() SaveAs( can, "finalDistributionData_%s"%plot )
def finalDistributionMC(plot): # Sample names treeVersion = 12 g1 = "slimGJets_200_400_V03.%s_tree.root" % treeVersion g2 = "slimGJets_400_inf_V03.%s_tree.root" % treeVersion q1 = "slimQCD_250_500_V03.%s_tree.root" % treeVersion q2 = "slimQCD_500_1000_V03.%s_tree.root" % treeVersion q3 = "slimQCD_1000_inf_V03.%s_tree.root" % treeVersion tt = "slimTTJets_V03.%s_tree.root" % treeVersion w1 = "slimWJets_250_300_V03.%s_tree.root" % treeVersion w2 = "slimWJets_300_400_V03.%s_tree.root" % treeVersion w3 = "slimWJets_400_inf_V03.%s_tree.root" % treeVersion wg1 = "slimWGamma_50_130_V03.%s_tree.root" % treeVersion wg2 = "slimWGamma_130_inf_V03.%s_tree.root" % treeVersion tg = "slimTTGamma_V03.%s_tree.root" % treeVersion zgn = "slimZGammaNuNu_V03.%s_tree.root" % treeVersion data = [g1, g2, q1, q2, q3, tt, w1, w2, w3, zgn, wg1, wg2, tg] # additional ISR uncertainty ewkUncertainty = 0.11 isrUncertaintyZ = 0.5 isrUncertaintyW = 0.5 isrUncertaintyT = 0.5 isrUncertainty = 0.5 leptonPtCut = 25 # only larger than 15 make sense here, since this is the reprocessing cut commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format( leptonPtCut) #commonCut = "[email protected]() && [email protected]()" # Compute the weights: #weight2D = getMixedWeigthHisto( data, data, commonCut ) #attachWeightsToFiles( data, weight2D, "foWeights" ) #from qcdClosure import drawWeightHisto #drawWeightHisto( weight2D, "MC" ) # Get Histograms dataHist = getHists(data, plot, commonCut) fgammaHist, fgammaWeightError = predictionHistos(data, plot, commonCut, modifyEmptyBins=False) egammaHist = multiDimFakeRate(data, plot, commonCut, isData=False) egammaHistsys = setRelativeUncertainty(egammaHist.Clone(randomName()), ewkUncertainty) fsrZ = getHists([zgn], plot, commonCut) fsrZsys = setRelativeUncertainty(fsrZ, isrUncertaintyZ) fsrW = getHists([wg1, wg2], plot, commonCut) fsrWsys = setRelativeUncertainty(fsrW, isrUncertaintyW) fsrT = getHists([tg], plot, commonCut) fsrTsys = setRelativeUncertainty(fsrT, isrUncertaintyT) fsr = addHistos([fsrT, fsrW, fsrZ]) fsrSys = setRelativeUncertainty(fsr, isrUncertainty) #signal1 = getMetHisto( "W", 900, 1720 ) #signal2 = getMetHisto( "B", 1700, 1120 ) signal1 = getHists(["slimW_1700_720_375_V03.06_tree.root"], plot, commonCut) signal2 = getHists(["slimW_900_1720_375_V03.06_tree.root"], plot, commonCut) signal3 = getHists(["slimB_1300_1720_375_V03.06_tree.root"], plot, commonCut) signal4 = getHists(["slimB_1700_1120_375_V03.06_tree.root"], plot, commonCut) for i, signal in enumerate([signal1, signal2, signal3, signal4]): signal.SetLineColor(ROOT.kGreen + i) signal.SetLineColor(ROOT.kBlue + i) #signal.SetLineStyle(5+i) # prettify histograms fgammaHist.SetLineColor(7) egammaHist.SetLineColor(3) fsrZ.SetLineColor(ROOT.kRed - 7) fsrW.SetLineColor(ROOT.kRed - 9) fsrT.SetLineColor(ROOT.kRed) mh = Multihisto() mh.orderByIntegral = False mh.addHisto(fsrT, "#gamma t#bar{t}", True) mh.addHisto(fsrW, "#gamma W", True) mh.addHisto(fsrZ, "#gamma Z", True) mh.addHisto(egammaHist, "e#rightarrow#gamma", True) mh.addHisto(fgammaHist, "Multijet", True) dataLegName = "Data" mh.addHisto(dataHist, dataLegName, draw="pe") mh.addHisto(signal2, "Bino-like #chi_{1}^{0}", draw="hist") mh.addHisto(signal1, "Wino-like #chi_{1}^{0}", draw="hist") # get all SYSTEMATICAL uncertainties: systematicUncertHistStack = ROOT.THStack() systematicUncertHistStack.Add(fgammaWeightError) systematicUncertHistStack.Add(egammaHistsys) #systematicUncertHistStack.Add( fsrTsys ) #systematicUncertHistStack.Add( fsrWsys ) #systematicUncertHistStack.Add( fsrZsys ) systematicUncertHistStack.Add(fsrSys) #if plot == "met": # writeDataCard( treeVersion, dataHist, fgammaHist, fgammaWeightError, # egammaHist, egammaHistsys, # fsr, fsrSys ) # draw stuff luminosity = 19.7 infoText = ROOT.TLatex( 0, .96, "CMS Private Work - %sfb^{-1} #sqrt{s}=8TeV #geq1#gamma_{tight},#geq2jets" % luminosity) infoText.SetNDC() infoText.SetTextSize(.04) can = ROOT.TCanvas() mh.Draw() errorBand = mh.stack.GetStack().Last().Clone(randomName()) sysUncert = systematicUncertHistStack.GetStack().Last() for bin in range(errorBand.GetNbinsX() + 2): errorBand.SetBinError( bin, errorBand.GetBinError(bin) | qPlus | sysUncert.GetBinError(bin)) errorBand.SetFillStyle(3002) errorBand.SetMarkerSize(0) errorBand.SetFillColor(1) errorBand.Draw("e2 same") from myRatio import Ratio r = Ratio("Data / Bkg", dataHist, mh.stack.GetStack().Last(), systematicUncertHistStack.GetStack().Last()) r.draw(0.5, 1.5) infoText.Draw() SaveAs(can, "finalDistributionData_%s" % plot)
def compareTrees(plot="photons.pt", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False): cut = "1" #cut = plot+">110" #cut = "!photons[0].isGen(0)" #cut = "ht < 600" gH = getHistoFromFiles(plot, "photonTree", filenames, cut) fH = getHistoFromFiles(plot, "photonJetTree", filenames, cut, color=2) weight2D = getMixedWeigthHisto(filenames, filenames, cut, control=True, fillEmptyBins=False) for filename in filenames: fTree = readTree(filename, "photonJetTree") writeWeight2DToFile(filename, fTree, weight2D, "foWeightsCompare") fgammaHist, fgammaWeightError = qcdPredictionHistos( filenames, plot, cut, True) for bin in range(fgammaHist.GetNbinsX() + 2): fgammaHist.SetBinError( bin, sqrt( fgammaHist.GetBinError(bin)**2 + fgammaWeightError.GetBinContent(bin)**2)) fH = fgammaHist for h in [gH, fH]: h.Scale(1. / h.Integral()) h.SetMarkerSize(0) h.GetXaxis().SetTitleOffset(1.03) h.GetYaxis().SetTitleOffset(1.5) h.GetXaxis().SetLabelSize(0.0633790992496425) h.GetXaxis().SetTitleSize(0.0633790992496425) h.GetYaxis().SetLabelSize(0.0633790992496425) h.GetYaxis().SetTitleSize(0.0633790992496425) h.GetYaxis().SetLabelOffset(0) if plot == "photons[0].pt": h.GetXaxis().SetTitle("$p_{T}$ [GeV]") if plot == "photons[0].ptJet()": h.GetXaxis().SetTitle("$p_{T^*}$ [GeV]") mh = Multihisto() mh.leg.SetX1(0.608) mh.leg.SetX2(0.95) mh.addHisto(gH, "#gamma_{#text{tight}}", draw="hist e") mh.addHisto(fH, "#gamma_{#text{loose}}", draw="hist e") can = ROOT.TCanvas() #can.SetBottomMargin(0) #can.SetTopMargin(0) #can.SetRightMargin(0) can.SetLeftMargin(0.19) can.cd() mh.Draw() pc1 = ROOT.TLatex(0, .96, "CMS Private Work") pc2 = ROOT.TLatex(.51, .96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}") for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio("#gamma/#gamma_{jet}", gH, fH) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad("compare2_%s_%s" % (plot, shortName(filenames))) ROOT.gPad.SaveAs("~/master/documents/thesis/plots/compare_%s_%s.tex" % (manipulateSaveName(plot), shortName(filenames))) correctTiksPlot( "/home/knut/master/documents/thesis/plots/compare_%s_%s.tex" % (manipulateSaveName(plot), shortName(filenames))) ROOT.SetOwnership(can, False)
def compareTrees( plot="photons.pt", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False ): cut = "1" #cut = plot+">110" #cut = "!photons[0].isGen(0)" #cut = "ht < 600" gH = getHistoFromFiles( plot, "photonTree", filenames, cut ) fH = getHistoFromFiles( plot, "photonJetTree", filenames, cut, color=2 ) weight2D = getMixedWeigthHisto( filenames, filenames, cut, control=True, fillEmptyBins=False ) for filename in filenames: fTree = readTree( filename, "photonJetTree" ) writeWeight2DToFile( filename, fTree, weight2D, "foWeightsCompare" ) fgammaHist, fgammaWeightError = qcdPredictionHistos( filenames, plot, cut, True ) for bin in range( fgammaHist.GetNbinsX()+2 ): fgammaHist.SetBinError( bin, sqrt( fgammaHist.GetBinError(bin)**2 + fgammaWeightError.GetBinContent(bin)**2 ) ) fH = fgammaHist for h in [gH, fH]: h.Scale( 1./h.Integral() ) h.SetMarkerSize(0) h.GetXaxis().SetTitleOffset( 1.03 ) h.GetYaxis().SetTitleOffset( 1.5 ) h.GetXaxis().SetLabelSize( 0.0633790992496425 ) h.GetXaxis().SetTitleSize( 0.0633790992496425 ) h.GetYaxis().SetLabelSize( 0.0633790992496425 ) h.GetYaxis().SetTitleSize( 0.0633790992496425 ) h.GetYaxis().SetLabelOffset(0) if plot == "photons[0].pt": h.GetXaxis().SetTitle( "$p_{T}$ [GeV]" ) if plot == "photons[0].ptJet()": h.GetXaxis().SetTitle( "$p_{T^*}$ [GeV]" ) mh = Multihisto() mh.leg.SetX1(0.608) mh.leg.SetX2(0.95) mh.addHisto( gH, "#gamma_{#text{tight}}", draw="hist e" ) mh.addHisto( fH, "#gamma_{#text{loose}}", draw="hist e" ) can = ROOT.TCanvas() #can.SetBottomMargin(0) #can.SetTopMargin(0) #can.SetRightMargin(0) can.SetLeftMargin(0.19) can.cd() mh.Draw() pc1 = ROOT.TLatex(0,.96, "CMS Private Work") pc2 = ROOT.TLatex( .51,.96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}") for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio( "#gamma/#gamma_{jet}", gH, fH ) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad( "compare2_%s_%s"%(plot,shortName( filenames )) ) ROOT.gPad.SaveAs("~/master/documents/thesis/plots/compare_%s_%s.tex"%(manipulateSaveName(plot),shortName( filenames )) ) correctTiksPlot("/home/knut/master/documents/thesis/plots/compare_%s_%s.tex"%(manipulateSaveName(plot),shortName( filenames )) ) ROOT.SetOwnership( can, False )
def drawStackedBackground( plot, treeName, listOfFiles, sumBinned, order=False ): cut = "[email protected]() && [email protected]()" # if a data histogram is present, the mc integral will scaled to data mcHists = [] dataHists = [] for fileName in listOfFiles: datasetAbbr = getDatasetAbbr( fileName ) try: color = colors[datasetAbbr] except: color = 1 tree = readTree( fileName, treeName ) histo = getHisto( tree, plot, color=color, cut=cut ) if "PhotonHad" in fileName: dataHists.append( (datasetAbbr, histo ) ) else: mcHists.append( ( datasetAbbr, histo ) ) # merge datahists if there dataHist = addHistos( [histo for datasetAbbr, histo in dataHists] ) if dataHists else None scale = 1.*dataHist.Integral()/addHistos( [histo for datasetAbbr, histo in mcHists] ).Integral() if dataHists else 1 scale = 1. # combine MC datasets if sumBinned: for combiAbbr, abbrList in combinedDatasets.iteritems(): if set(abbrList).issubset( set( [ a for a, h in mcHists ] ) ): #print "a valid combination was found" histosToAdd = [ h for a,h in mcHists if a in abbrList ] thisSum = addHistos( histosToAdd ) mcHists = [ (a,h) for a,h in mcHists if a not in abbrList]+[(combiAbbr,thisSum)] mh = Multihisto() mh.setMinimum(0.01) mh.leg.SetX1NDC(0.5) mh.leg.SetY1NDC(0.5) mh.orderByIntegral = order if dataHist: mh.addHisto( dataHist, "Data", draw="e0" ) for abbr, hist in mcHists: hist.Scale( scale ) mh.addHisto( hist, datasetToLatex(abbr), toStack=True, draw="hist" ) # add signal histos #signalFiles = ["slimW_1000_1020_375_V02.44_tree.root", "slimW_1200_1120_375_V02.44_tree.root"] signalFiles = ["slimW_1200_1120_375_V02.44_tree.root"] signalFiles = [] for iColor, sf in enumerate(signalFiles): tree = readTree( sf, treeName ) histo = getHisto( tree, plot, color=ROOT.kMagenta+iColor, cut=cut ) mh.addHisto( histo, datasetToLatex(getDatasetAbbr(sf)), draw="hist" ) can = ROOT.TCanvas() can.cd() mh.Draw() info = PlotCaption(treeName=treeName) info.Draw() if dataHist: from myRatio import Ratio den = mh.stack.GetStack().Last().Clone( randomName() ) den.SetLineColor(2) r = Ratio( "Data/Sim", dataHist, den ) r.draw(0,2) allDatasetAbbr = getSaveNameFromDatasets( listOfFiles ) SaveAs( can, "stackedHisto_%s_%s_%s"%(treeName, plot,allDatasetAbbr) )
def drawClosure(plot, gTree, foTree, cut, can, info, datasetAbbr, additionalInfo=""): # The first attempt to get the histogram is only to get the minimal # and maximal value on the x-axis, for not predefined binning h_gamma = getHisto(gTree, plot, cut=cut) h_fo = getHisto(foTree, plot, cut=cut) xMin, xMax = getXMinXMax([h_gamma, h_fo]) h_gamma = getHisto(gTree, plot, cut=cut, color=1, firstBin=xMin, lastBin=xMax) h_fo = getHisto(foTree, plot, cut=cut, weight="weight*w_qcd", color=46, firstBin=xMin, lastBin=xMax) h_fo_error = getQCDErrorHisto(foTree, plot, cut=cut, firstBin=xMin, lastBin=xMax) h_fo_error.SetFillColor(h_fo.GetLineColor()) h_fo_error.SetLineColor(h_fo_error.GetLineColor()) h_fo_error.SetFillStyle(3254) h_fo_error.SetMarkerSize(0) muhisto = Multihisto() muhisto.leg.SetHeader(datasetToLatex(datasetAbbr)) muhisto.addHisto(h_gamma, "#gamma", draw="hist e0") muhisto.addHisto(h_fo, "#gamma_{jet}#upointw", draw="hist e0") muhisto.addHisto(h_fo_error, "#sigma_{w}", draw="e2") hPad = ROOT.TPad("hPad", "Histogram", 0, 0.2, 1, 1) hPad.cd() muhisto.Draw() ratioPad = ROOT.TPad("ratioPad", "Ratio", 0, 0, 1, 0.2) ratioPad.cd() ratioPad.SetLogy(False) from myRatio import Ratio r = Ratio("#gamma/#gamma_{pred}", h_gamma, h_fo) ratio, sys, one = r.draw(0, 2) ratio.Draw("e1") sys.Draw("same e2") one.Draw() can.cd() hPad.Draw() ratioPad.Draw() info.Draw() SaveAs( can, "qcd_afterWeighting_%s_%s_%s" % (datasetAbbr + additionalInfo, plot, reweightVar)) ROOT.SetOwnership(hPad, False) ROOT.SetOwnership(ratioPad, False)
def finalDistributionData(plot): # Sample names treeVersion = "31" wg = [ "slimWGamma_50_130_V03.%s_tree.root"%treeVersion, \ "slimWGamma_130_inf_V03.%s_tree.root"%treeVersion ] tg = ["slimTTGamma_V03.%s_tree.root" % treeVersion] zgn = ["slimZGammaNuNu_V03.%s_tree.root" % treeVersion] zgll = ["slimZGammaLL_V02.19b_tree.root"] data = [ "PhotonHad%s_V03.%s_tree.root" % (x, treeVersion) for x in ["A", "B", "C", "D"] ] # additional ISR uncertainty ewkUncertainty = 0.11 isrUncertaintyZ = 0.5 isrUncertaintyW = 0.5 isrUncertaintyT = 0.5 isrUncertainty = 0.5 leptonPtCut = 25 # only larger than 15 make sense here, since this is the reprocessing cut #commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format(leptonPtCut) commonCut = "[email protected]() && [email protected]() && thisPt>0 && recoilChr > 0" # Compute the weights: weight2D = getMixedWeigthHisto(data, data, commonCut) attachWeightsToFiles(data, weight2D, "foWeights") drawWeightHisto(weight2D, "Data", writeWeightFile=True) # Get Histograms dataHist = getHists(data, plot, commonCut) fgammaHist, fgammaWeightError = predictionHistos(data, plot, commonCut, modifyEmptyBins=False) egammaHist = multiDimFakeRate(data, plot, commonCut) egammaHistsys = setRelativeUncertainty(egammaHist.Clone(randomName()), ewkUncertainty) fsrZ = getHists(zgn, plot, commonCut + "&&genPhotons[0].pt>130") fsrZll = getHists(zgll, plot, commonCut) if plot == "met": fsrZ2 = getHists(zgll, plot + "LL", commonCut + "&&genPhotons[0].pt<130") else: fsrZ2 = getHists(zgll, plot, commonCut + "&&0") fsrZ2.Scale(20. / (2. * 3.363)) fsrW = getHists(wg, plot, commonCut) fsrT = getHists(tg, plot, commonCut) # apply common scale factor for h in fsrW, fsrT, fsrZ, fsrZ2, fsrZll: h.Scale(1.5) fsr = addHistos([fsrT, fsrW, fsrZ, fsrZ2, fsrZll]) fsr.SetLineColor(ROOT.kRed) fsrSys = setRelativeUncertainty(fsr, isrUncertainty) #signal1 = getMetHisto( "W", 900, 1720 ) #signal2 = getMetHisto( "B", 1700, 1120 ) signal1 = getHists(["slimW_1700_720_375_V03.06_tree.root"], plot, commonCut) signal2 = getHists(["slimW_900_1720_375_V03.06_tree.root"], plot, commonCut) signal3 = getHists(["slimB_1300_1720_375_V03.06_tree.root"], plot, commonCut) signal4 = getHists(["slimB_1700_1120_375_V03.06_tree.root"], plot, commonCut) for i, signal in enumerate([signal1, signal2, signal3, signal4]): signal.SetLineColor(ROOT.kGreen + i) signal.SetLineColor(ROOT.kBlue + i) #signal.SetLineStyle(5+i) # prettify histograms fgammaHist.SetLineColor(7) egammaHist.SetLineColor(3) fsrZ.SetLineColor(ROOT.kRed - 7) fsrW.SetLineColor(ROOT.kRed - 9) fsrT.SetLineColor(ROOT.kRed) mh = Multihisto() mh.setMinimum(0.2) mh.orderByIntegral = False mh.addHisto(fsr, "ISR", True) mh.addHisto(egammaHist, "e#rightarrow#gamma", True) mh.addHisto(fgammaHist, "Multijet", True) dataLegName = "Data" mh.addHisto(dataHist, dataLegName, draw="pe x0") mh.addHisto(signal2, "Bino-like #chi_{1}^{0}", draw="hist") mh.addHisto(signal1, "Wino-like #chi_{1}^{0}", draw="hist") # get all SYSTEMATICAL uncertainties: systematicUncertHistStack = ROOT.THStack() systematicUncertHistStack.Add(fgammaWeightError) systematicUncertHistStack.Add(egammaHistsys) systematicUncertHistStack.Add(fsrSys) if plot == "met": writeDataCard(treeVersion, dataHist, fgammaHist, fgammaWeightError, egammaHist, egammaHistsys, fsr, fsrSys) # draw stuff luminosity = 19.7 infoText = ROOT.TLatex( 0, .96, "CMS Private Work - %sfb^{-1} #sqrt{s}=8TeV #geq1#gamma_{tight},#geq2jets" % luminosity) infoText.SetNDC() infoText.SetTextSize(.04) can = ROOT.TCanvas() mh.Draw() statUncert = mh.stack.GetStack().Last().Clone(randomName()) systUncert = systematicUncertHistStack.GetStack().Last().Clone( randomName()) totalUncert = statUncert.Clone(randomName()) for bin in range(totalUncert.GetNbinsX() + 2): totalUncert.SetBinError( bin, statUncert.GetBinError(bin) | qPlus | systUncert.GetBinError(bin)) for h in statUncert, systUncert, totalUncert: h.SetMarkerSize(0) totalUncert.SetFillStyle(3002) totalUncert.SetFillColor(1) totalUncert.Draw("same e2") systUncert.SetFillStyle(3254) systUncert.SetFillColor(2) systUncert.Draw("same e2") statUncert.SetLineWidth(3) statUncert.SetLineColor(2) statUncert.Draw("same e x0") dataHist.Draw("same pe x0") from myRatio import Ratio r = Ratio("Data / Bkg", dataHist, mh.stack.GetStack().Last(), systematicUncertHistStack.GetStack().Last()) r.draw(.5, 1.5) infoText.Draw() SaveAs(can, "finalDistributionData_%s" % plot)
def finalDistributionMC( plot ): # Sample names treeVersion = 12 g1 = "slimGJets_200_400_V03.%s_tree.root"%treeVersion g2 = "slimGJets_400_inf_V03.%s_tree.root"%treeVersion q1 = "slimQCD_250_500_V03.%s_tree.root"%treeVersion q2 = "slimQCD_500_1000_V03.%s_tree.root"%treeVersion q3 = "slimQCD_1000_inf_V03.%s_tree.root"%treeVersion tt = "slimTTJets_V03.%s_tree.root"%treeVersion w1 = "slimWJets_250_300_V03.%s_tree.root"%treeVersion w2 = "slimWJets_300_400_V03.%s_tree.root"%treeVersion w3 = "slimWJets_400_inf_V03.%s_tree.root"%treeVersion wg1 = "slimWGamma_50_130_V03.%s_tree.root"%treeVersion wg2 = "slimWGamma_130_inf_V03.%s_tree.root"%treeVersion tg = "slimTTGamma_V03.%s_tree.root"%treeVersion zgn = "slimZGammaNuNu_V03.%s_tree.root"%treeVersion data = [ g1, g2, q1, q2, q3, tt, w1, w2, w3, zgn, wg1,wg2,tg ] # additional ISR uncertainty ewkUncertainty = 0.11 isrUncertaintyZ = 0.5 isrUncertaintyW = 0.5 isrUncertaintyT = 0.5 isrUncertainty = 0.5 leptonPtCut = 25 # only larger than 15 make sense here, since this is the reprocessing cut commonCut = "([email protected]() || Max$(electrons.pt)<{0}) && ([email protected]() || Max$(muons.pt)<{0})".format(leptonPtCut) #commonCut = "[email protected]() && [email protected]()" # Compute the weights: #weight2D = getMixedWeigthHisto( data, data, commonCut ) #attachWeightsToFiles( data, weight2D, "foWeights" ) #from qcdClosure import drawWeightHisto #drawWeightHisto( weight2D, "MC" ) # Get Histograms dataHist = getHists( data, plot, commonCut ) fgammaHist, fgammaWeightError = predictionHistos( data, plot, commonCut, modifyEmptyBins=False ) egammaHist = multiDimFakeRate( data, plot, commonCut, isData=False ) egammaHistsys = setRelativeUncertainty( egammaHist.Clone(randomName()), ewkUncertainty ) fsrZ = getHists( [zgn], plot, commonCut ) fsrZsys = setRelativeUncertainty( fsrZ, isrUncertaintyZ ) fsrW = getHists( [wg1,wg2], plot, commonCut ) fsrWsys = setRelativeUncertainty( fsrW, isrUncertaintyW ) fsrT = getHists( [tg], plot, commonCut ) fsrTsys = setRelativeUncertainty( fsrT, isrUncertaintyT ) fsr = addHistos( [fsrT, fsrW, fsrZ ] ) fsrSys = setRelativeUncertainty( fsr, isrUncertainty ) #signal1 = getMetHisto( "W", 900, 1720 ) #signal2 = getMetHisto( "B", 1700, 1120 ) signal1 = getHists( ["slimW_1700_720_375_V03.06_tree.root"], plot, commonCut ) signal2 = getHists( ["slimW_900_1720_375_V03.06_tree.root"], plot, commonCut ) signal3 = getHists( ["slimB_1300_1720_375_V03.06_tree.root"], plot, commonCut ) signal4 = getHists( ["slimB_1700_1120_375_V03.06_tree.root"], plot, commonCut ) for i, signal in enumerate([signal1, signal2, signal3, signal4]): signal.SetLineColor( ROOT.kGreen + i ) signal.SetLineColor( ROOT.kBlue + i ) #signal.SetLineStyle(5+i) # prettify histograms fgammaHist.SetLineColor(7) egammaHist.SetLineColor( 3 ) fsrZ.SetLineColor( ROOT.kRed-7 ) fsrW.SetLineColor( ROOT.kRed-9 ) fsrT.SetLineColor( ROOT.kRed ) mh = Multihisto() mh.orderByIntegral = False mh.addHisto( fsrT, "#gamma t#bar{t}", True ) mh.addHisto( fsrW, "#gamma W", True ) mh.addHisto( fsrZ, "#gamma Z", True ) mh.addHisto( egammaHist, "e#rightarrow#gamma", True ) mh.addHisto( fgammaHist, "Multijet", True ) dataLegName = "Data" mh.addHisto( dataHist, dataLegName, draw="pe" ) mh.addHisto( signal2, "Bino-like #chi_{1}^{0}", draw="hist" ) mh.addHisto( signal1, "Wino-like #chi_{1}^{0}", draw="hist" ) # get all SYSTEMATICAL uncertainties: systematicUncertHistStack = ROOT.THStack() systematicUncertHistStack.Add( fgammaWeightError ) systematicUncertHistStack.Add( egammaHistsys ) #systematicUncertHistStack.Add( fsrTsys ) #systematicUncertHistStack.Add( fsrWsys ) #systematicUncertHistStack.Add( fsrZsys ) systematicUncertHistStack.Add( fsrSys ) #if plot == "met": # writeDataCard( treeVersion, dataHist, fgammaHist, fgammaWeightError, # egammaHist, egammaHistsys, # fsr, fsrSys ) # draw stuff luminosity = 19.7 infoText = ROOT.TLatex(0,.96, "CMS Private Work - %sfb^{-1} #sqrt{s}=8TeV #geq1#gamma_{tight},#geq2jets"%luminosity ) infoText.SetNDC() infoText.SetTextSize(.04) can = ROOT.TCanvas() mh.Draw() errorBand = mh.stack.GetStack().Last().Clone( randomName() ) sysUncert = systematicUncertHistStack.GetStack().Last() for bin in range(errorBand.GetNbinsX()+2): errorBand.SetBinError( bin, errorBand.GetBinError(bin) |qPlus| sysUncert.GetBinError(bin) ) errorBand.SetFillStyle(3002) errorBand.SetMarkerSize(0) errorBand.SetFillColor(1) errorBand.Draw("e2 same") from myRatio import Ratio r = Ratio( "Data / Bkg", dataHist, mh.stack.GetStack().Last(), systematicUncertHistStack.GetStack().Last() ) r.draw(0.5,1.5) infoText.Draw() SaveAs( can, "finalDistributionData_%s"%plot )
def compareTrees( plot="met", filenames=["slimAllQCD_V02.28_tree.root"], drawRatio=False ): #cut = "@electrons.size()==0 && @muons.size()==0" #cut = plot+">110" #cut = "!photons[0].isGen(0)" #cut = "ht < 600" cut = "1" gH = getHistoFromFiles( plot, "photonTree", filenames, "1" ) fH = getHistoFromFiles( plot, "photonJetTree", filenames, "1", color=2 ) for h in [gH, fH]: #h.Scale( 1./h.Integral() ) h.SetMarkerSize(0) h.GetXaxis().SetTitleOffset( 1.03 ) h.GetYaxis().SetTitleOffset( 1.5 ) h.GetXaxis().SetLabelSize( 0.0633790992496425 ) h.GetXaxis().SetTitleSize( 0.0633790992496425 ) h.GetYaxis().SetLabelSize( 0.0633790992496425 ) h.GetYaxis().SetTitleSize( 0.0633790992496425 ) h.GetYaxis().SetLabelOffset(0) if plot == "photons[0].pt": h.GetXaxis().SetTitle( "$p_{T}$ [GeV]" ) if plot == "photons[0].ptJet()": h.GetXaxis().SetTitle( "$p_{T^*}$ [GeV]" ) ratio = gH.Clone( randomName() ) ratio.Divide( fH ) mh = Multihisto() #mh.leg.SetX1(0.608) #mh.leg.SetX2(0.95) mh.addHisto( gH, "#gamma_{#text{tight}}", draw="hist e" ) mh.addHisto( fH, "#gamma_{#text{loose}}", draw="hist e" ) can = ROOT.TCanvas() #can.SetBottomMargin(0) #can.SetTopMargin(0) #can.SetRightMargin(0) #can.SetLeftMargin(0.19) can.cd() mh.Draw() pc1 = ROOT.TLatex(0,.96, "CMS Private Work") pc2 = ROOT.TLatex( .51,.96, "\SI{19.8}{fb^{-1}} #sqrt{s}=\SI{8}{TeV}") for pc in [pc1, pc2]: pc.SetNDC() pc.SetTextSize(0.06311227345609463) pc.Draw() if drawRatio: from myRatio import Ratio r = Ratio( "#gamma/#gamma_{jet}", gH, fH ) r.draw() #can.SetFillColor(ROOT.kGreen) SavePad( "compare2_%s_%s"%("test",shortName( filenames )) ) #ROOT.gPad.SaveAs("~/master/documents/thesis/plots/compare_%s_%s.tex"%(manipulateSaveName(plot),shortName( filenames )) ) ROOT.SetOwnership( can, False )