def saveMeanCorMatrix(ni,nj): ''' Save the mean correlation matrix of the 100 correaltion matrix ''' path = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/noNoisenoCont/Box_00' pathToSave = '/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/noNoisenoCont/Results/xi_delta_QSO_result_' ### Get the 0_0 simu cor1D = myTools.getCorrelationMatrix(numpy.load(path + '0/Simu_000/Results/subSampling_LYA_QSO_cov_1D.npy')) cor2D = myTools.getCorrelationMatrix(numpy.load(path + '0/Simu_000/Results/subSampling_LYA_QSO_cov_2D.npy')) for i in numpy.arange(ni): for j in numpy.arange(nj): if (i==0 and j==0): continue cor1D += myTools.getCorrelationMatrix(numpy.load(path + str(i)+'/Simu_00'+str(j)+'/Results/subSampling_LYA_QSO_cov_1D.npy')) cor2D += myTools.getCorrelationMatrix(numpy.load(path + str(i)+'/Simu_00'+str(j)+'/Results/subSampling_LYA_QSO_cov_2D.npy')) cor1D /= 100. cor2D /= 100. numpy.save(pathToSave+'cor_mean_1D', cor1D) numpy.save(pathToSave+'cor_mean_2D', cor2D) return
def getResults(): """ Set the array of results and of data """ for i in numpy.arange(ni__): for j in numpy.arange(nj__): idx = i * nj__ + j pathData__ = ( "/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/noNoisenoCont/Box_00" + str(i) + "/Simu_00" + str(j) + "/Results/BaoFit_q_f/bao" + type__ ) path__ = ( "/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/noNoisenoCont/Box_00" + str(i) + "/Simu_00" + str(j) + "/Results/BaoFit_q_f/bao" + type__ ) pathOtherFit__ = ( "/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/noNoisenoCont/Box_00" + str(i) + "/Simu_00" + str(j) + "/Results/BaoFit_q_f/bao" + type__ ) name2 = ".data" name1 = ".residuals.dat" name3 = ".save.pars" name4 = ".fit.chisq" name5 = ".save.pcov" ### Get data and fit data = numpy.loadtxt(path__ + name1) save0 = data[:, 0].astype(int) save4 = data[:, 4] save5 = data[:, 5] save7 = data[:, 7] save9 = data[:, 9] xxxAll__[:, idx][save0] = save4 muuAll__[:, idx][save0] = save5 xi_fitAll__[:, idx][save0] = save7 xi_errAll__[:, idx][save0] = save9 ### Get only data data = numpy.loadtxt(pathData__ + name2) save0 = data[:, 0].astype(int) save1 = data[:, 1] xi_datAll__[:, idx][save0] = save1 ### Get the parameters of the fit data = numpy.loadtxt(path__ + name3) param__[:, 0, idx] = data[:, 1] param__[:, 1, idx] = data[:, 2] ### Get the chi2 of the fit data = numpy.loadtxt(path__ + name4) chi2__[:, idx] = data if otherFit__: data = numpy.loadtxt(pathOtherFit__ + name4) chi2OtherFit__[:, idx] = data ### Get correlation parameters data = numpy.loadtxt(path__ + name5) for el in data: covar__[el[0], el[1], idx] = el[2] numpy.save("param", param__) mean = numpy.average(param__[9, 0, :], weights=numpy.power(param__[9, 1, :], -2.0)) err = numpy.power(numpy.sum(numpy.power(param__[9, 1, :], -2.0)), -0.5) print " alpha_parallel = ", mean, " +/- ", err mean = numpy.average(param__[10, 0, :], weights=numpy.power(param__[10, 1, :], -2.0)) err = numpy.power(numpy.sum(numpy.power(param__[10, 1, :], -2.0)), -0.5) print " alpha_perp = ", mean, " +/- ", err mean = numpy.mean(param__[9, 0, :]) err = numpy.sqrt(numpy.var(param__[9, 0, :]) / (ni__ * nj__)) print " alpha_parallel = ", mean, " +/- ", err mean = numpy.mean(param__[10, 0, :]) err = numpy.sqrt(numpy.var(param__[10, 0, :]) / (ni__ * nj__)) print " alpha_perp = ", mean, " +/- ", err ### Pass from covariance matrix to correlation matrix for i in numpy.arange(nbMocks__).astype(int): covar__[:, :, i] = myTools.getCorrelationMatrix(covar__[:, :, i]) ### Get the mean of all correlation-functions xi_resAll__[:] = (xi_datAll__ - xi_fitAll__) / xi_errAll__ xxx__[:] = numpy.mean(xxxAll__, axis=1)[:] muu__[:] = numpy.mean(muuAll__, axis=1)[:] xi_dat__[:] = numpy.mean(xi_datAll__, axis=1)[:] xi_fit__[:] = numpy.mean(xi_fitAll__, axis=1)[:] xi_err__[:] = numpy.mean(xi_errAll__, axis=1)[:] / numpy.sqrt(nbMocks__) xi_res__[:] = numpy.mean((xi_datAll__ - xi_fitAll__) / xi_errAll__, axis=1)[:] return
nbBinY2D__ = 2*nbBin1D__ nbBin2D__ = nbBinX2D__*nbBinY2D__ ### Mu nbBinM__ = 25; path1__ = '/home/gpfs/manip/mnt0607/bao/hdumasde/Results/Txt/Correlation_test2/' i = 0 j = 0 cov = numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Box_00'+str(i)+'/Simu_00'+str(j)+'/Results_RandomPosInCell/subSampling_LYA_QSO_cov_2D.npy') ### If correlation matrix from another matrix cor = myTools.getCorrelationMatrix(numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_cov_2D_meanSubSampling.npy')) cov = myTools.getCovarianceMatrix(cor,numpy.diag(cov)) #myTools.plot2D(cov) #myTools.plot2D(cor) print cor.flatten()[ cor.flatten()<0.99 ].size plt.hist(cor.flatten()[ cor.flatten()<0.99 ], bins=10000, histtype='step', label='<corr each simu> ~ 8000 realisation') cor = myTools.getCorrelationMatrix(numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Box_000/Simu_000/Results_RandomPosInCell/subSampling_LYA_QSO_cov_2D.npy')) plt.hist(cor.flatten()[ cor.flatten()<0.99 ], bins=10000, histtype='step', label='Simu 0 0 = 80 realisation') cor = myTools.getCorrelationMatrix(numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_cov_2D.npy')) plt.hist(cor.flatten()[ cor.flatten()<0.99 ], bins=10000, histtype='step', label='100 realisation') cor = numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results_RandomPosInCell/xi_delta_QSO_result_cor_2D_allSubSampling.npy')
print data.size print data[0].size print data data[ data==0. ] = numpy.float('nan') myTools.plot2D(data) print ' is diag <0. : ', numpy.diag(data)[ numpy.diag(data)<0. ].size print ' is diag ==0. : ', numpy.diag(data)[ numpy.diag(data)==0. ].size cor = myTools.getCorrelationMatrix(data) print cor print cor[ cor==1. ].size print cor[ cor>1. ].size print cor[ cor==0. ].size #cor[ cor==0. ] = numpy.float('nan') #cor[ cor==1. ] = numpy.float('nan') #myTools.plot2D(cor) plt.hist( numpy.diag(data), bins=100 ) plt.show() plt.hist( cor[ numpy.logical_and( cor!=0., cor!=1.) ], bins=100 ) plt.show()
plt.title(r'$1D: \, \delta_{LYA} \, - \, \delta_{LYA} $', fontsize=40) plt.xlabel(r'$s \, [h^{-1}.Mpc]$', fontsize=40) plt.ylabel(r'$\xi (s)$', fontsize=40) myTools.deal_with_plot(False,False,True) plt.xlim([ numpy.min(xi1D[:,0])-10., numpy.max(xi1D[:,0])+10. ]) plt.xlim([ 4., numpy.max(xi1D[:,0])+10. ]) plt.show() cov1D = numpy.cov(numpy.load('/home/gpfs/manip/mnt0607/bao/hdumasde/Mock_JMLG/v1547/Results/xi_1D_delta_delta_LYA_result_cov.npy')) myTools.plot2D(cov1D) myTools.plot2D(myTools.getCorrelationMatrix(cov1D))