コード例 #1
0
    def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False):  #pylint: disable=W0613
        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  #obs
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            pi = fc(h, 'pi', nact, init_scale=0.01)
            vf = fc(h, 'v', 1)[:, 0]

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X: ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X: ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value
コード例 #2
0
    def __init__(self,
                 sess,
                 ob_space,
                 ac_space,
                 nbatch,
                 nsteps,
                 nlstm=256,
                 reuse=False):
        nenv = nbatch // nsteps

        nh, nw, nc = ob_space.shape
        ob_shape = (nbatch, nh, nw, nc)
        nact = ac_space.n
        X = tf.placeholder(tf.uint8, ob_shape)  #obs
        M = tf.placeholder(tf.float32, [nbatch])  #mask (done t-1)
        S = tf.placeholder(tf.float32, [nenv, nlstm * 2])  #states
        with tf.variable_scope("model", reuse=reuse):
            h = nature_cnn(X)
            xs = batch_to_seq(h, nenv, nsteps)
            ms = batch_to_seq(M, nenv, nsteps)
            h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm)
            h5 = seq_to_batch(h5)
            pi = fc(h5, 'pi', nact)
            vf = fc(h5, 'v', 1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pi)

        v0 = vf[:, 0]
        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = np.zeros((nenv, nlstm * 2), dtype=np.float32)

        def step(ob, state, mask):
            return sess.run([a0, v0, snew, neglogp0], {
                X: ob,
                S: state,
                M: mask
            })

        def value(ob, state, mask):
            return sess.run(v0, {X: ob, S: state, M: mask})

        self.X = X
        self.M = M
        self.S = S
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value
コード例 #3
0
def nature_cnn(unscaled_images):
    """
    CNN from Nature paper.
    """
    scaled_images = tf.cast(unscaled_images, tf.float32) / 255.
    activ = tf.nn.relu
    h = activ(
        conv(scaled_images, 'c1', nf=32, rf=8, stride=4,
             init_scale=np.sqrt(2)))
    h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2)))
    h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2)))
    h3 = conv_to_fc(h3)
    return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
コード例 #4
0
    def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False):  #pylint: disable=W0613
        ob_shape = (nbatch, ) + ob_space.shape
        actdim = ac_space.shape[0]
        X = tf.placeholder(tf.float32, ob_shape, name='Ob')  #obs
        with tf.variable_scope("model", reuse=reuse):
            activ = tf.tanh
            h1 = activ(fc(X, 'pi_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'pi_fc2', nh=64, init_scale=np.sqrt(2)))
            pi = fc(h2, 'pi', actdim, init_scale=0.01)
            h1 = activ(fc(X, 'vf_fc1', nh=64, init_scale=np.sqrt(2)))
            h2 = activ(fc(h1, 'vf_fc2', nh=64, init_scale=np.sqrt(2)))
            vf = fc(h2, 'vf', 1)[:, 0]
            logstd = tf.get_variable(name="logstd",
                                     shape=[1, actdim],
                                     initializer=tf.zeros_initializer())

        pdparam = tf.concat([pi, pi * 0.0 + logstd], axis=1)

        self.pdtype = make_pdtype(ac_space)
        self.pd = self.pdtype.pdfromflat(pdparam)

        a0 = self.pd.sample()
        neglogp0 = self.pd.neglogp(a0)
        self.initial_state = None

        def step(ob, *_args, **_kwargs):
            a, v, neglogp = sess.run([a0, vf, neglogp0], {X: ob})
            return a, v, self.initial_state, neglogp

        def value(ob, *_args, **_kwargs):
            return sess.run(vf, {X: ob})

        self.X = X
        self.pi = pi
        self.vf = vf
        self.step = step
        self.value = value