コード例 #1
0
                        validation_data=(X_test, Y_test_oh))
    # 保存模型
    model.save(r'.\model\\' + path + '\\' + str(signal_len) + 's-train_' +
               str(k + 1) + '-fold.h5py')
    # 预测
    prob_trainY = model.predict(X_train)
    prob_testY = model.predict(X_test)

    pred_trainY = np.argmax(prob_trainY, axis=1)
    pred_testY = np.argmax(prob_testY, axis=1)

    # 评价指标
    Se_tr, Sp_tr, Ber_tr = calc_ber(Y_train, pred_trainY)
    Se_te, Sp_te, Ber_te = calc_ber(Y_test, pred_testY)

    Auc_tr = calc_auc(Y_train, np.argmax(prob_trainY, axis=1), 1)
    Auc_te = calc_auc(Y_test, np.argmax(prob_testY, axis=1), 1)

    # 绘制代价函数曲线
    train_loss = history.history['loss']
    test_loss = history.history['val_loss']

    train_auc = history.history['auc']
    test_auc = history.history['val_auc']

    # 保存重要数据
    important_data = {
        'train_loss': train_loss,
        'test_loss': test_loss,
        'Se': Se_te,
        'Sp': Sp_te,
コード例 #2
0
        prob_trainY = model.predict(X_train)
        prob_testY = model.predict(X_test)
        # ROC曲线 tpr = Se,fpr = 1-Sp Youden_index = Se+Sp-1 = tpr-fpr(约登指数)
        fpr, tpr, thresholds = roc_curve(Y_train,
                                         prob_trainY,
                                         1,
                                         drop_intermediate=False)
        Youden_index = tpr - fpr
        # 概率转换成预测标签
        thr = thresholds[np.where(Youden_index == np.max(Youden_index))]
        pred_trainY = (prob_trainY >= thr).astype('int8')
        pred_testY = (prob_testY >= thr).astype('int8')
        # 评价指标
        Se_tr, Sp_tr, Ber_tr = calc_ber(Y_train, pred_trainY)
        Se_te, Sp_te, Ber_te = calc_ber(Y_test, pred_testY)
        Auc_tr = calc_auc(Y_train, prob_trainY, 1)
        Auc_te = calc_auc(Y_test, prob_testY, 1)

        # 绘制代价函数曲线
        train_loss = history.history['loss']
        test_loss = history.history['val_loss']

        train_auc = history.history['auc']
        test_auc = history.history['val_auc']
        # 保存重要数据
        important_data = {
            'train_loss': train_loss,
            'test_loss': test_loss,
            'Se': Se_te,
            'Sp': Sp_te,
            'Auc': Auc_te,