コード例 #1
0
def evaluate_4TTN(params, training_data, ancilla, total, rounding):
    answers = np.zeros(training_data.shape[0])
    L = training_data.shape[1] - 1
    for i in range(training_data.shape[0]):
        """FOR EACH DATA POINT"""
        """Lets Encode the data elements first"""

        psi = initial_encode(training_data[i, :L], ancilla)
        """Stage 1: Unitaries on all of the qubits, ancilla or not"""
        for j in range(total):
            psi = np.matmul(ry(params[j], j, total), psi)
            """Stage 2: CNOT plus unitary for N-1 times (cascading)"""
        j = 0
        psi = np.matmul(cnot(j, j + 1, total), psi)
        psi = np.matmul(ry(params[total], j + 1, total), psi)
        j = 3
        psi = np.matmul(cnot(j, j - 1, total), psi)
        psi = np.matmul(ry(params[total + 1], j - 1, total), psi)
        j = 1
        psi = np.matmul(cnot(j, j + 1, total), psi)
        psi = np.matmul(ry(params[total + 2], j + 1, total), psi)
        """Stage 3: Trace and Measure"""
        zero_prob = prob_zero(keep_n(psi, total, 2))
        """Stage 4: Calculate Cost"""
        answers[i] = eval_cost(zero_prob, training_data[i, L], rounding)
    total_cost = np.sum(answers) / training_data.shape[0]
    return total_cost
コード例 #2
0
def evaluate_MPS(params, training_data, ancilla, total, rounding):
    """ UNITARIES ON ALL FOLLOWED BY CASCADE OF CNOT(a,b) and unitary on b """

    answers = np.zeros(training_data.shape[0])
    L = training_data.shape[1] - 1
    for i in range(training_data.shape[0]):
        """FOR EACH DATA POINT"""
        """Lets Encode the data elements first"""

        psi = np.real(initial_encode2(training_data[i, :L], ancilla))
        psi = np.reshape(psi, (2**total, 1))
        """Stage 1: Unitaries on all of the qubits, ancilla or not"""
        for j in range(total):
            psi = np.matmul(ry(params[j], j, total), psi)
            """Stage 2: CNOT plus unitary for N-1 times (cascading)"""
        for j in range(total - 1):
            psi = np.matmul(cnot(j, j + 1, total), psi)
            psi = np.matmul(ry(params[total + j], j + 1, total), psi)
        """Stage 3: Trace and Measure"""
        zero_prob = prob_zero(keep_last(psi, total))
        """Stage 4: Calculate Cost"""
        answers[i] = eval_cost(zero_prob, training_data[i, L], rounding)

    total_cost = np.sum(answers) / training_data.shape[0]
    return total_cost
コード例 #3
0
def evaluate_MPS_yz(params, training_data, ancilla, total, rounding):
    """ AS MPS BUT INITIAL UNITARIES ARE ALL RZ,RY,RZ FORM """
    answers = np.zeros(training_data.shape[0])
    L = training_data.shape[1] - 1
    lst = list(range(total - 1))
    for i in range(training_data.shape[0]):
        """FOR EACH DATA POINT"""
        """Lets Encode the data elements first"""

        psi = np.real(initial_encode2(training_data[i, :L], ancilla))
        psi = np.reshape(psi, (2**total, 1))
        """Stage 1: Unitaries on all of the qubits, ancilla or not"""
        for j in range(total):
            psi = np.matmul(rz(params[j], j, total), psi)
        for j in range(total):
            psi = np.matmul(ry(params[j + total], j, total), psi)
        for j in range(total):
            psi = np.matmul(rz(params[j + (total * 2)], j, total), psi)
            """Stage 2: CNOT plus unitary for N-1 times (cascading)"""
        for j in range(total - 1):
            psi = np.matmul(cnot(j, j + 1, total), psi)
            psi = np.matmul(ry(params[total * 3 + j], j + 1, total), psi)
        """Stage 3: Trace and Measure"""
        dm = np.kron(np.transpose(np.conjugate(psi)), psi)
        dm = np.reshape(dm, (2**total, 2**total))
        dm = partial_trace(dm, lst)
        # print(dm)
        """Stage 3: Trace and Measure"""
        zero_prob = prob_zero(dm)
        """Stage 4: Calculate Cost"""
        answers[i] = eval_cost(zero_prob, training_data[i, L], rounding)

    total_cost = np.sum(answers) / training_data.shape[0]
    return total_cost
コード例 #4
0
def evaluate_MPS_plotter(params, training_data, ancilla, total, rounding):
    guesses = np.zeros(training_data.shape[0])
    L = training_data.shape[1] - 1
    for i in range(training_data.shape[0]):
        """FOR EACH DATA POINT"""
        """Lets Encode the data elements first"""

        psi = initial_encode(training_data[i, :L], ancilla)
        """Stage 1: Unitaries on all of the qubits, ancilla or not"""
        for j in range(total):
            psi = np.matmul(ry(params[j], j, total), psi)
            """Stage 2: CNOT plus unitary for N-1 times (cascading)"""
        for j in range(total - 1):
            psi = np.matmul(cnot(j, j + 1, total), psi)
            psi = np.matmul(ry(params[total + j], j + 1, total), psi)
        """Stage 3: Trace and Measure"""
        zero_prob = prob_zero(keep_last(psi, total))
        """Stage 4: Calculate Cost"""
        guesses[i] = 1 - round(zero_prob)
    return guesses
コード例 #5
0
def evaluate_MPS_xyz(params, training_data, ancilla, total, rounding):
    """ LIKE MPS BUT EACH SINGLE UNITARY IS A DIFFERENT TYPE"""
    answers = np.zeros(training_data.shape[0])
    L = training_data.shape[1] - 1
    for i in range(training_data.shape[0]):
        """FOR EACH DATA POINT"""
        """Lets Encode the data elements first"""

        psi = np.real(initial_encode2(training_data[i, :L], ancilla))
        psi = np.reshape(psi, (2**total, 1))

        for j in range(total - 1):
            psi = np.matmul(ry(params[3 * j], j, total), psi)
            psi = np.matmul(ry(params[3 * j + 1], j + 1, total), psi)
            psi = np.matmul(cnot(j, j + 1, total), psi)
            psi = np.matmul(rz(params[3 * j + 2], j + 1, total), psi)
        """Stage 3: Trace and Measure"""
        zero_prob = prob_zero(keep_last(psi, total))
        """Stage 4: Calculate Cost"""
        answers[i] = eval_cost(zero_prob, training_data[i, L], rounding)

    total_cost = np.sum(answers) / training_data.shape[0]
    return total_cost