コード例 #1
0
def init_config():
    parser = myexman.ExParser(file=os.path.basename(__file__))
    parser.add_argument('--name', type=str, default='')

    parser.add_argument('--epochs', type=int, default=160)
    parser.add_argument('--wd', type=float)
    parser.add_argument('--lr_schedule', type=str, default='original')

    parser.add_argument('--network', type=str, default='vgg')
    parser.add_argument('--dataset', type=str, default='cifar10')
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--exception', type=int, nargs='*', default=[])

    parser.add_argument('--ratio', type=float, default=0.9)
    parser.add_argument('--prune_last', type=bool, default=True)

    parser.add_argument('--run', type=str, default='')
    parser.add_argument('--pruning', type=str, default='grasp')

    parser.add_argument('--seed', type=int, default=0)

    # Grasp params
    parser.add_argument('--samples_per_class', type=int, default=10)
    args = parser.parse_args()
    return args
コード例 #2
0
def main():
    parser = myexman.ExParser(file=os.path.basename(__file__))
    add_learner_params(parser)

    is_help = False
    if '--help' in sys.argv or '-h' in sys.argv:
        sys.argv.pop(
            sys.argv.index('--help' if '--help' in sys.argv else '-h'))
        is_help = True

    args, _ = parser.parse_known_args(log_params=False)

    models.REGISTERED_MODELS[args.problem].add_model_hparams(parser)

    if is_help:
        sys.argv.append('--help')

    args = parser.parse_args(namespace=args)

    if args.data == 'imagenet' and args.aug == False:
        raise Exception('ImageNet models should be eval with aug=True!')

    if args.seed != -1:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True

    args.gpu = 0
    ngpus = torch.cuda.device_count()
    args.number_of_processes = 1
    if args.dist == 'ddp':
        # add additional argument to be able to retrieve # of processes from logs
        # and don't change initial arguments to reproduce the experiment
        args.number_of_processes = args.world_size * ngpus
        parser.update_params_file(args)

        args.world_size *= ngpus
        mp.spawn(
            main_worker,
            nprocs=ngpus,
            args=(ngpus, args),
        )
    else:
        parser.update_params_file(args)
        main_worker(args.gpu, -1, args)
コード例 #3
0
import utils
import utils_data

from torch import nn
from torch.optim.lr_scheduler import ReduceLROnPlateau

from models import ResNet_cifar100
from models import ResNet_cifar10
from models import ResNet_tinyimagenet
from models import ODENet_cifar100
from models import ODENet_cifar10
from models import ODENet_tinyimagenet
from logger import Logger
from utils import AverageMeter

parser = myexman.ExParser(file=os.path.basename(__file__))
parser.add_argument('--name', default='')
# Architecture
parser.add_argument('--time', type=eval, default=True)
parser.add_argument('--odenet', type=eval, default=False)
parser.add_argument('--n_blocks', type=int, default=2)
parser.add_argument('--norm', type=eval, default=False)
# Data
parser.add_argument('--data', default='cifar100', type=str)
parser.add_argument('--data_seed', default=30, type=int)
parser.add_argument('--val_size', default=0.2, type=float)
parser.add_argument('--train_bs', default=512, type=int)
parser.add_argument('--test_bs', default=512, type=int)
parser.add_argument('--augmentation', default=True, type=eval)
# Integration
parser.add_argument('--tol', type=float, default=1e-3)
コード例 #4
0
ファイル: train-bnn.py プロジェクト: zizai/deep-weight-prior
                              (args.epochs - args.decrease_from) + 1, 1.)
    return max(0, lr)


def predict(data, net):
    pred = []
    l = []
    for x, y in data:
        l.append(y.numpy())
        x = x.to(device)
        p = F.log_softmax(net(x), dim=1)
        pred.append(p.data.cpu().numpy())
    return np.concatenate(pred), np.concatenate(l)


parser = myexman.ExParser(file=__file__)
parser.add_argument('--data', default='cifar')
parser.add_argument('--num_examples', default=None, type=int)
parser.add_argument('--data_split_seed', default=42, type=int)
parser.add_argument('--resume', default='')
parser.add_argument('--lr',
                    default=0.001,
                    type=float,
                    help='Initial learning rate')
parser.add_argument('--gamma', default=0.5, type=float)
parser.add_argument('--epochs', default=100, type=int, help='Number of epochs')
parser.add_argument('--decrease_from', default=0, type=int)
parser.add_argument('--bs', default=256, type=int, help='Batch size')
parser.add_argument('--test_bs',
                    default=500,
                    type=int,