コード例 #1
0
def test_rosenbrock():
    """Test the 2-dimensional Rosenbrock function.

Testing 2-D Rosenbrock:
Expected: x=[1., 1.] and f=0

Using DifferentialEvolutionSolver:
Solution:  [ 1.00000037  1.0000007 ]
f value:  2.29478683682e-13
Iterations:  99
Function evaluations:  3996
Time elapsed:  0.582273006439  seconds

Using DifferentialEvolutionSolver2:
Solution:  [ 0.99999999  0.99999999]
f value:  3.84824937598e-15
Iterations:  100
Function evaluations:  4040
Time elapsed:  0.577210903168  seconds

Using NelderMeadSimplexSolver:
Solution:  [ 0.99999921  1.00000171]
f value:  1.08732211477e-09
Iterations:  70
Function evaluations:  130
Time elapsed:  0.0190329551697  seconds

Using PowellDirectionalSolver:
Solution:  [ 1.  1.]
f value:  0.0
Iterations:  28
Function evaluations:  859
Time elapsed:  0.113857030869  seconds
"""

    print "Testing 2-D Rosenbrock:"
    print "Expected: x=[1., 1.] and f=0"
    from mystic.models import rosen as costfunc
    ndim = 2
    lb = [-5.]*ndim
    ub = [5.]*ndim
    x0 = [2., 3.]
    maxiter = 10000
    
    # DifferentialEvolutionSolver
    print "\nUsing DifferentialEvolutionSolver:"
    npop = 40
    from mystic.solvers import DifferentialEvolutionSolver
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.strategy import Rand1Bin
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver(ndim, npop)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = COG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Bin)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 2.29478683682e-13, tol=3e-3)

    # DifferentialEvolutionSolver2
    print "\nUsing DifferentialEvolutionSolver2:"
    npop = 40
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.strategy import Rand1Bin
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver2(ndim, npop)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = COG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Bin)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 3.84824937598e-15, tol=3e-3)

    # NelderMeadSimplexSolver
    print "\nUsing NelderMeadSimplexSolver:"
    from mystic.solvers import NelderMeadSimplexSolver
    from mystic.termination import CandidateRelativeTolerance as CRT
    esow = Monitor()
    ssow = Monitor() 
    solver = NelderMeadSimplexSolver(ndim)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = CRT()
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 1.08732211477e-09, tol=3e-3)

    # PowellDirectionalSolver
    print "\nUsing PowellDirectionalSolver:"
    from mystic.solvers import PowellDirectionalSolver
    from mystic.termination import NormalizedChangeOverGeneration as NCOG
    esow = Monitor()
    ssow = Monitor() 
    solver = PowellDirectionalSolver(ndim)
    solver.SetInitialPoints(x0)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    term = NCOG(1e-10)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)
コード例 #2
0
def test_griewangk():
    """Test Griewangk's function, which has many local minima.

Testing Griewangk:
Expected: x=[0.]*10 and f=0

Using DifferentialEvolutionSolver:
Solution:  [  8.87516194e-09   7.26058147e-09   1.02076001e-08   1.54219038e-08
  -1.54328461e-08   2.34589663e-08   2.02809360e-08  -1.36385836e-08
   1.38670373e-08   1.59668900e-08]
f value:  0.0
Iterations:  4120
Function evaluations:  205669
Time elapsed:  34.4936850071  seconds

Using DifferentialEvolutionSolver2:
Solution:  [ -2.02709316e-09   3.22017968e-09   1.55275472e-08   5.26739541e-09
  -2.18490470e-08   3.73725584e-09  -1.02315312e-09   1.24680355e-08
  -9.47898116e-09   2.22243557e-08]
f value:  0.0
Iterations:  4011
Function evaluations:  200215
Time elapsed:  32.8412370682  seconds
"""

    print "Testing Griewangk:"
    print "Expected: x=[0.]*10 and f=0"
    from mystic.models import griewangk as costfunc
    ndim = 10
    lb = [-400.]*ndim
    ub = [400.]*ndim
    maxiter = 10000
    seed = 123 # Re-seed for each solver to have them all start at same x0
    
    # DifferentialEvolutionSolver
    print "\nUsing DifferentialEvolutionSolver:"
    npop = 50
    random_seed(seed)
    from mystic.solvers import DifferentialEvolutionSolver
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.termination import CandidateRelativeTolerance as CRT
    from mystic.termination import VTR
    from mystic.strategy import Rand1Bin, Best1Bin, Rand1Exp
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver(ndim, npop)
    solver.SetRandomInitialPoints(lb, ub)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    solver.enable_signal_handler()
    #term = COG(1e-10)
    #term = CRT()
    term = VTR(0.)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Exp, \
                 CrossProbability=0.3, ScalingFactor=1.0)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)

    # DifferentialEvolutionSolver2
    print "\nUsing DifferentialEvolutionSolver2:"
    npop = 50
    random_seed(seed)
    from mystic.solvers import DifferentialEvolutionSolver2
    from mystic.termination import ChangeOverGeneration as COG
    from mystic.termination import CandidateRelativeTolerance as CRT
    from mystic.termination import VTR
    from mystic.strategy import Rand1Bin, Best1Bin, Rand1Exp
    esow = Monitor()
    ssow = Monitor() 
    solver = DifferentialEvolutionSolver2(ndim, npop)
    solver.SetRandomInitialPoints(lb, ub)
    solver.SetStrictRanges(lb, ub)
    solver.SetEvaluationLimits(generations=maxiter)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    #term = COG(1e-10)
    #term = CRT()
    term = VTR(0.)
    time1 = time.time() # Is this an ok way of timing?
    solver.Solve(costfunc, term, strategy=Rand1Exp, \
                 CrossProbability=0.3, ScalingFactor=1.0)
    sol = solver.Solution()
    time_elapsed = time.time() - time1
    fx = solver.bestEnergy
    print "Solution: ", sol
    print "f value: ", fx
    print "Iterations: ", solver.generations
    print "Function evaluations: ", len(esow.x)
    print "Time elapsed: ", time_elapsed, " seconds"
    assert almostEqual(fx, 0.0, tol=3e-3)
コード例 #3
0
ファイル: test_rosenbrock.py プロジェクト: yinhao1501/mystic
    #  xinit = [random.random() for j in range(ND)]
    xinit = [0.8, 1.2, 0.7]
    # xinit = [0.8,1.2,1.7]             #... better when using "bad" range
    min = [-0.999, -0.999, 0.999]  #XXX: behaves badly when large range
    max = [200.001, 100.001, inf]  #... for >=1 x0 out of bounds; (up xtol)
    # min = [-0.999, -0.999, -0.999]
    # max = [200.001, 100.001, inf]
    #  min = [-0.999, -0.999, 0.999]     #XXX: tight range and non-randomness
    #  max = [2.001, 1.001, 1.001]       #...: is _bad_ for DE solvers

    #print(diffev(rosen,xinit,NP,retall=0,full_output=0))
    solver = DifferentialEvolutionSolver(len(xinit), NP)
    solver.SetInitialPoints(xinit)
    solver.SetStrictRanges(min, max)
    solver.SetEvaluationLimits(generations=MAX_GENERATIONS)
    solver.SetEvaluationMonitor(esow)
    solver.SetGenerationMonitor(ssow)
    solver.Solve(rosen, VTR(0.0001), \
                 CrossProbability=0.5, ScalingFactor=0.6, disp=1)
    sol = solver.bestSolution
    print(sol)
    #print("Current function value: %s" % solver.bestEnergy)
    #print("Iterations: %s" % solver.generations)
    #print("Function evaluations: %s" % solver.evaluations)

    times.append(time.time() - start)
    algor.append('Differential Evolution\t')

    for k, t in zip(algor, times):
        print("%s\t -- took %s" % (k, t))