コード例 #1
0
def optimize(cost,_bounds,_constraints):
  from mystic.solvers import DifferentialEvolutionSolver2
  from mystic.termination import ChangeOverGeneration as COG
  from mystic.strategy import Best1Exp
  from mystic.monitors import VerboseMonitor, Monitor
  from mystic.tools import random_seed
  from mystic.termination import Or, CollapseWeight, CollapsePosition, state


  if debug:
      random_seed(123) # or 666 to force impose_unweighted reweighting
      stepmon = VerboseMonitor(1,1)
  else:
      stepmon = VerboseMonitor(10) if verbose else Monitor()
  stepmon._npts = npts
  evalmon = Monitor()

  lb,ub = _bounds
  ndim = len(lb)

  solver = DifferentialEvolutionSolver2(ndim,npop)
  solver.SetRandomInitialPoints(min=lb,max=ub)
  solver.SetStrictRanges(min=lb,max=ub)
  solver.SetEvaluationLimits(maxiter,maxfun)
  solver.SetEvaluationMonitor(evalmon)
  solver.SetGenerationMonitor(stepmon)
  solver.SetConstraints(_constraints)

  tol = convergence_tol
  term = Or(COG(tol,ngen), CollapseWeight(), CollapsePosition())
  solver.Solve(cost,termination=term,strategy=Best1Exp, disp=verbose, \
               CrossProbability=crossover,ScalingFactor=percent_change)
 #while collapse and solver.Collapse(verbose): #XXX: total_evaluations?
 #    if debug: print(state(solver._termination).keys())
 #    solver.Solve() #XXX: cost, term, strategy, cross, scale ?
 #    if debug: solver.SaveSolver('debug.pkl')

  solved = solver.bestSolution
 #print("solved: %s" % solver.Solution())
  func_max = MINMAX * solver.bestEnergy       #NOTE: -solution assumes -Max
 #func_max = 1.0 + MINMAX*solver.bestEnergy   #NOTE: 1-sol => 1-success = fail
  func_evals = solver.evaluations
  from mystic.munge import write_support_file
  write_support_file(stepmon, npts=npts)
  return solved, func_max, func_evals
コード例 #2
0
def runme():
    # instantiate the solver
    _solver = NelderMeadSimplexSolver(3)
    lb, ub = [0., 0., 0.], [10., 10., 10.]
    _solver.SetRandomInitialPoints(lb, ub)
    _solver.SetEvaluationLimits(1000)
    # add a monitor stream
    stepmon = VerboseMonitor(1)
    _solver.SetGenerationMonitor(stepmon)
    # configure the bounds
    _solver.SetStrictRanges(lb, ub)
    # configure stop conditions
    term = Or(VTR(), ChangeOverGeneration())
    _solver.SetTermination(term)
    # add a periodic dump to an archive
    tmpfile = 'mysolver.pkl'
    _solver.SetSaveFrequency(10, tmpfile)
    # run the optimizer
    _solver.Solve(rosen)
    # get results
    x = _solver.bestSolution
    y = _solver.bestEnergy
    # load the saved solver
    solver = LoadSolver(tmpfile)
    #os.remove(tmpfile)
    # obligatory check that state is the same
    assert all(x == solver.bestSolution)
    assert y == solver.bestEnergy
    # modify the termination condition
    term = VTR(0.0001)
    solver.SetTermination(term)
    # run the optimizer
    solver.Solve(rosen)
    os.remove(tmpfile)
    # check the solver serializes
    _s = dill.dumps(solver)
    return dill.loads(_s)
コード例 #3
0
ファイル: test_svc2.py プロジェクト: datnamer/mystic

@suppressed(1e-2)
def conserve(x):
    return constrain(x)


from mystic.monitors import VerboseMonitor
mon = VerboseMonitor(10)

# solve the dual for alpha
from mystic.solvers import DifferentialEvolutionSolver as DESolver
from mystic.termination import Or, ChangeOverGeneration, CollapseAt
ndim = len(lb)
npop = nx * 3
stop = Or(ChangeOverGeneration(1e-8, 200), CollapseAt(0.0))
solver = DESolver(ndim, npop)
solver.SetRandomInitialPoints(min=lb, max=_b)
solver.SetStrictRanges(min=lb, max=ub)
solver.SetGenerationMonitor(mon)
solver.SetConstraints(conserve)
solver.SetTermination(stop)
solver.Solve(objective, ExtraArgs=(Q, b), disp=1)
alpha = solver.bestSolution

print 'solved x: ', alpha
print "constraint A*x == 0: ", inner(Aeq, alpha)
print "minimum 0.5*x'Qx + b'*x: ", solver.bestEnergy

# calculate weight vectors, support vectors, and bias
wv = WeightVector(alpha, X, y)
コード例 #4
0
assert solver._state == None
assert LoadSolver(solver._state) == None

solver = DifferentialEvolutionSolver(3, 40)
solver.SetRandomInitialPoints([0., 0., 0.], [10., 10., 10.])
term = When(VTR())
solver.SetSaveFrequency(10, tmpfile)
solver.SetTermination(term)
solver.Solve(rosen)
x = solver.bestSolution
y = solver.bestEnergy
_solver = LoadSolver(tmpfile)
os.remove(tmpfile)
assert all(x == _solver.bestSolution)
assert y == _solver.bestEnergy

solver = DifferentialEvolutionSolver(3, 40)
solver.SetRandomInitialPoints([0., 0., 0.], [10., 10., 10.])
term = Or(VTR(), ChangeOverGeneration())
solver.SetSaveFrequency(10, tmpfile)
solver.SetTermination(term)
solver.Solve(rosen)
x = solver.bestSolution
y = solver.bestEnergy
_solver = LoadSolver(tmpfile)
os.remove(tmpfile)
assert all(x == _solver.bestSolution)
assert y == _solver.bestEnergy

# EOF
コード例 #5
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 2018-2022 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/mystic/blob/master/LICENSE

from mystic.solvers import DifferentialEvolutionSolver
from mystic.models import rosen
from mystic.tools import solver_bounds
from mystic.termination import ChangeOverGeneration as COG, Or, CollapseCost
from mystic.monitors import VerboseLoggingMonitor as Monitor

solver = DifferentialEvolutionSolver(3, 40)
solver.SetRandomInitialPoints([-100] * 3, [100] * 3)

mon = Monitor(1)
options = dict(limit=1.95, samples=50, clip=False)
mask = {}  #solver_bounds(solver)
stop = Or(CollapseCost(mask=mask, **options), COG(generations=50))

solver.SetGenerationMonitor(mon)
solver.SetTermination(stop)
solver.SetObjective(rosen)
solver.Solve()

print(solver.Terminated(info=True))
print('%s @' % solver.bestEnergy)
print(solver.bestSolution)
コード例 #6
0
ファイル: collapse_solver.py プロジェクト: arita37/mystic
from mystic.termination import ChangeOverGeneration as COG

# update termination condition with new masks
## termination should be Or(*conditions), where
## conditions are: COG(), Collapse*(), and possibly others.
# takes termination condition (or solver?) and returns termination condition
# also requires updated masks as input
verbose = True  #False

#from mystic.models import rosen as model; target = 1.0
from mystic.models import sphere as model
target = 0.0
n = 10

#term = Or((COG(generations=300), CollapseAt(None, generations=100), CollapseAs(generations=100)))
term = Or((COG(generations=500), CollapseAt(target, generations=100)))
#term = COG(generations=500)

from mystic.solvers import DifferentialEvolutionSolver as TheSolver
#from mystic.solvers import PowellDirectionalSolver as TheSolver
from mystic.solvers import BuckshotSolver
#solver = BuckshotSolver(n, 10)
solver = TheSolver(n)
solver.SetRandomInitialPoints()
solver.SetStrictRanges(min=[0] * n, max=[5] * n)
solver.SetEvaluationLimits(evaluations=320000, generations=1000)
solver.SetTermination(term)

#from mystic.termination import state
#print state(solver._termination).keys()
solver.Solve(model, disp=verbose)
コード例 #7
0
def solve(measurements, method):
    """Find reasonable marker positions based on a set of measurements."""
    print(method)

    marker_measurements = measurements
    if np.size(measurements) == 21:
        marker_measurements = measurements[(21 - 15) :]
    # m0 has known positions (0, 0, 0)
    # m1 has unknown x-position
    # All others have unknown xy-positions
    num_params = 0 + 1 + 2 + 2 + 2 + 2

    bound = 400.0
    lower_bound = [
        0.0,
        0.0,
        0.0,
        0.0,
        0.0,
        -bound,
        0.0,
        -bound,
        0.0,
    ]
    upper_bound = [
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
        bound,
    ]

    def costx_no_nozzle(posvec):
        """Identical to cost_no_nozzle, except the shape of inputs"""
        positions = posvec2matrix_no_nozzle(posvec)
        return cost_no_nozzle(positions, marker_measurements)

    guess_0 = [0.0] * num_params

    intermediate_cost = 0.0
    intermediate_solution = []
    if method == "SLSQP":
        sol = scipy.optimize.minimize(
            costx_no_nozzle,
            guess_0,
            method="SLSQP",
            bounds=list(zip(lower_bound, upper_bound)),
            tol=1e-20,
            options={"disp": True, "ftol": 1e-40, "eps": 1e-10, "maxiter": 500},
        )
        intermediate_cost = sol.fun
        intermediate_solution = sol.x
    elif method == "L-BFGS-B":
        sol = scipy.optimize.minimize(
            costx_no_nozzle,
            guess_0,
            method="L-BFGS-B",
            bounds=list(zip(lower_bound, upper_bound)),
            options={"disp": True, "ftol": 1e-12, "gtol": 1e-12, "maxiter": 50000, "maxfun": 1000000},
        )
        intermediate_cost = sol.fun
        intermediate_solution = sol.x
    elif method == "PowellDirectionalSolver":
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, And, Or

        solver = PowellDirectionalSolver(num_params)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetTermination(Or(VTR(1e-25), COG(1e-10, 20)))
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(VerboseMonitor(5))
        solver.Solve(costx_no_nozzle)
        intermediate_cost = solver.bestEnergy
        intermediate_solution = solver.bestSolution
    elif method == "differentialEvolutionSolver":
        from mystic.solvers import DifferentialEvolutionSolver2
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, ChangeOverGeneration, And, Or
        from mystic.strategy import Best1Exp, Best1Bin

        stop = Or(VTR(1e-18), ChangeOverGeneration(1e-9, 500))
        npop = 3
        stepmon = VerboseMonitor(100)
        solver = DifferentialEvolutionSolver2(num_params, npop)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(stepmon)
        solver.Solve(
            costx_no_nozzle,
            termination=stop,
            strategy=Best1Bin,
        )
        intermediate_cost = solver.bestEnergy
        intermediate_solution = solver.bestSolution
    else:
        print("Method %s is not supported!" % method)
        sys.exit(1)
    print("Best intermediate cost: ", intermediate_cost)
    print("Best intermediate positions: \n%s" % posvec2matrix_no_nozzle(intermediate_solution))
    if np.size(measurements) == 15:
        print("Got only 15 samples, so will not try to find nozzle position\n")
        return
    nozzle_measurements = measurements[: (21 - 15)]
    # Look for nozzle's xyz-offset relative to marker 0
    num_params = 3
    lower_bound = [
        0.0,
        0.0,
        -bound,
    ]
    upper_bound = [bound, bound, 0.0]

    def costx_nozzle(posvec):
        """Identical to cost_nozzle, except the shape of inputs"""
        positions = posvec2matrix_nozzle(posvec, intermediate_solution)
        return cost_nozzle(positions, measurements)

    guess_0 = [0.0, 0.0, 0.0]
    final_cost = 0.0
    final_solution = []
    if method == "SLSQP":
        sol = scipy.optimize.minimize(
            costx_nozzle,
            guess_0,
            method="SLSQP",
            bounds=list(zip(lower_bound, upper_bound)),
            tol=1e-20,
            options={"disp": True, "ftol": 1e-40, "eps": 1e-10, "maxiter": 500},
        )
        final_cost = sol.fun
        final_solution = sol.x
    elif method == "L-BFGS-B":
        sol = scipy.optimize.minimize(
            costx_nozzle,
            guess_0,
            method="L-BFGS-B",
            bounds=list(zip(lower_bound, upper_bound)),
            options={"disp": True, "ftol": 1e-12, "gtol": 1e-12, "maxiter": 50000, "maxfun": 1000000},
        )
        final_cost = sol.fun
        final_solution = sol.x
    elif method == "PowellDirectionalSolver":
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, And, Or

        solver = PowellDirectionalSolver(num_params)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetTermination(Or(VTR(1e-25), COG(1e-10, 20)))
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(VerboseMonitor(5))
        solver.Solve(costx_nozzle)
        final_cost = solver.bestEnergy
        final_solution = solver.bestSolution
    elif method == "differentialEvolutionSolver":
        from mystic.solvers import DifferentialEvolutionSolver2
        from mystic.monitors import VerboseMonitor
        from mystic.termination import VTR, ChangeOverGeneration, And, Or
        from mystic.strategy import Best1Exp, Best1Bin

        stop = Or(VTR(1e-18), ChangeOverGeneration(1e-9, 500))
        npop = 3
        stepmon = VerboseMonitor(100)
        solver = DifferentialEvolutionSolver2(num_params, npop)
        solver.SetEvaluationLimits(evaluations=3200000, generations=100000)
        solver.SetRandomInitialPoints(lower_bound, upper_bound)
        solver.SetStrictRanges(lower_bound, upper_bound)
        solver.SetGenerationMonitor(stepmon)
        solver.Solve(
            costx_nozzle,
            termination=stop,
            strategy=Best1Bin,
        )
        final_cost = solver.bestEnergy
        final_solution = solver.bestSolution

    print("Best final cost: ", final_cost)
    print("Best final positions:")
    final = posvec2matrix_nozzle(final_solution, intermediate_solution)[1:]
    for num in range(0, 6):
        print(
            "{0: 8.3f} {1: 8.3f} {2: 8.3f} <!-- Marker {3} -->".format(final[num][0], final[num][1], final[num][2], num)
        )
コード例 #8
0
def test_me(info='self'):
    from mystic.solvers import DifferentialEvolutionSolver
    s = DifferentialEvolutionSolver(4, 4)

    from mystic.termination import VTR
    from mystic.termination import ChangeOverGeneration
    from mystic.termination import NormalizedChangeOverGeneration
    v = VTR()
    c = ChangeOverGeneration()
    n = NormalizedChangeOverGeneration()

    if disp: print("define conditions...")
    _v = When(v)
    _c = When(c)
    _n = When(n)
    v_and_c = And(v, c)
    v_and_n = And(v, n)
    v_or_c = Or(v, c)
    v_or_n = Or(v, n)
    v_and_c__or_n = Or(v_and_c, _n)
    v_and_c__or_c = Or(v_and_c, _c)
    v_and_n__or_n = Or(v_and_n, _n)
    c_and_v = And(c, v)
    c_or_v = Or(c, v)
    c_or__c_and_v = Or(_c, c_and_v)

    assert len(_v) == len(_c) == len(_n) == 1
    assert list(_v).index(v) == list(_c).index(c) == list(_n).index(n) == 0
    assert list(_v).count(v) == list(_c).count(c) == list(_n).count(n) == 1
    assert v in _v and c in _c and n in _n
    assert v in v_and_c and c in v_and_c
    assert v in v_and_n and n in v_and_n
    assert v in v_or_c and c in v_or_c
    assert v in v_or_n and n in v_or_n
    assert len(v_and_c) == len(v_and_n) == len(v_or_c) == len(v_or_n) == 2
    assert len(v_and_c__or_n) == len(v_and_c__or_c) == len(v_and_n__or_n) == 2
    assert v not in v_and_c__or_n and c not in v_and_c__or_n and n not in v_and_c__or_n
    assert v_and_c in v_and_c__or_n and _n in v_and_c__or_n
    assert v_and_c in v_and_c__or_c and _c in v_and_c__or_c
    assert v_and_n in v_and_n__or_n and _n in v_and_n__or_n
    assert c in c_and_v and v in c_and_v
    assert c in c_or_v and v in c_or_v
    assert list(c_and_v).index(c) == list(v_and_c).index(v)
    assert list(c_and_v).index(v) == list(v_and_c).index(c)
    assert list(c_or_v).index(c) == list(v_or_c).index(v)
    assert list(c_or_v).index(v) == list(v_or_c).index(c)
    assert c_and_v in c_or__c_and_v and _c in c_or__c_and_v

    if disp:
        print("_v:%s" % _v)
        print("_c:%s" % _c)
        print("_n:%s" % _n)
        print("v_and_c:%s" % v_and_c)
        print("v_and_n:%s" % v_and_n)
        print("v_or_c:%s" % v_or_c)
        print("v_or_n:%s" % v_or_n)
        print("v_and_c__or_n:%s" % v_and_c__or_n)
        print("v_and_c__or_c:%s" % v_and_c__or_c)
        print("v_and_n__or_n:%s" % v_and_n__or_n)
        print("c_and_v:%s" % c_and_v)
        print("c_or_v:%s" % c_or_v)
        print("c_or__c_and_v:%s" % c_or__c_and_v)

    if disp: print("initial conditions...")
    _v_and_c = v_and_c(s, info)
    _v_and_n = v_and_n(s, info)
    _v_or_c = v_or_c(s, info)
    _v_or_n = v_or_n(s, info)

    assert not _v_and_c
    assert not _v_and_n
    assert not _v_or_c
    assert not _v_or_n

    if disp:
        print("v_and_c:%s" % _v_and_c)
        print("v_and_n:%s" % _v_and_n)
        print("v_or_c:%s" % _v_or_c)
        print("v_or_n:%s" % _v_or_n)

    if disp: print("after convergence toward zero...")
    s.energy_history = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    # _v and _n are True, _c is False
    _v_and_c = v_and_c(s, info)
    _v_and_n = v_and_n(s, info)
    _v_or_c = v_or_c(s, info)
    _v_or_n = v_or_n(s, info)

    assert not _v_and_c
    assert _v_and_n
    assert _v_or_c
    assert _v_or_n
    if info == 'self':
        assert v in _v_and_n and n in _v_and_n
        assert v in _v_or_c and c not in _v_or_c
        assert v in _v_or_n and n in _v_or_n

    if disp:
        print("v_and_c:%s" % _v_and_c)
        print("v_and_n:%s" % _v_and_n)
        print("v_or_c:%s" % _v_or_c)
        print("v_or_n:%s" % _v_or_n)

    if disp: print("nested compound termination...")
    # _v and _n are True, _c is False
    _v_and_c__or_n = v_and_c__or_n(s, info)
    _v_and_c__or_c = v_and_c__or_c(s, info)
    _v_and_n__or_n = v_and_n__or_n(s, info)

    assert _v_and_c__or_n
    assert not _v_and_c__or_c
    assert _v_and_n__or_n
    if info == 'self':
        assert _n in _v_and_c__or_n and v_and_c not in _v_and_c__or_n
        assert v not in _v_and_c__or_n and c not in _v_and_c__or_n
        assert v_and_n in _v_and_n__or_n and _n in _v_and_n__or_n
        assert v not in _v_and_n__or_n and n not in _v_and_n__or_n

    if disp:
        print("v_and_c__or_n:%s" % _v_and_c__or_n)
        print("v_and_c__or_c:%s" % _v_and_c__or_c)
        print("v_and_n__or_n:%s" % _v_and_n__or_n)

    if disp: print("individual conditions...")
    __v = _v(s, info)
    __c = _c(s, info)
    __n = _n(s, info)

    assert __v and __n
    assert not __c
    if info == 'self':
        assert v in __v and n in __n

    if disp:
        print("v:%s" % __v)
        print("c:%s" % __c)
        print("n:%s" % __n)

    if disp: print("conditions with false first...")
    _c_and_v = c_and_v(s, info)
    _c_or_v = c_or_v(s, info)
    _c_or__c_and_v = c_or__c_and_v(s, info)

    assert not _c_and_v
    assert _c_or_v
    assert not _c_or__c_and_v
    if info == 'self':
        assert v in _c_or_v and c not in _c_or_v

    if disp:
        print("c_and_v:%s" % _c_and_v)
        print("c_or_v:%s" % _c_or_v)
        print("c_or__c_and_v:%s" % _c_or__c_and_v)
def solve(samp, xyz_of_samp, _cost, method, cx_is_positive=False):
    """Find reasonable positions and anchors given a set of samples.
    """

    u = np.shape(samp)[0]
    ux = np.shape(xyz_of_samp)[0]
    number_of_params_pos = 3*(u - ux)

    def costx(posvec, anchvec):
        """Identical to cost, except the shape of inputs and capture of samp, xyz_of_samp, ux, and u

        Parameters
        ----------
        x : [A_ay A_az A_bx A_by A_bz A_cx A_cy A_cz A_dz
               x1   y1   z1   x2   y2   z2   ...  xu   yu   zu
        """
        anchors = anchorsvec2matrix(anchvec)
        pos = np.zeros((u, 3))
        if(np.size(xyz_of_samp) != 0):
            pos[0:ux] = xyz_of_samp
        pos[ux:] = np.reshape(posvec, (u-ux,3))
        return _cost(anchors, pos, samp)

    l_long = 5000.0
    l_short = 1700.0
    data_z_min = -20.0
    # Limits of anchor positions:
    #     |ANCHOR_XY|    < 4000
    #      ANCHOR_B_X    > 0
    #      ANCHOR_C_X    < 0
    #     |ANCHOR_ABC_Z| < 1700
    # 0 <  ANCHOR_D_Z    < 4000
    # Limits of data collection volume:
    #         |x| < 1700
    #         |y| < 1700
    # -20.0 <  z  < 3400.0
    # Define bounds
    lb = [      -l_long, # A_ay > -4000.0
               -l_short, # A_az > -1700.0
                    0.0, # A_bx > 0
                    0.0, # A_by > 0
               -l_short, # A_bz > -1700.0
                -l_long, # A_cx > -4000
                    0.0, # A_cy > 0
               -l_short, # A_cz > -1700.0
                    0.0, # A_dz > 0
          ] + [-l_short, -l_short, data_z_min]*(u-ux)
    ub = [          0.0, # A_ay < 0
                l_short, # A_az < 1700
                 l_long, # A_bx < 4000
                 l_long, # A_by < 4000
                l_short, # A_bz < 1700
                    0.0, # A_cx < 0
                 l_long, # A_cy < 4000.0
                l_short, # A_cz < 1700
                 l_long, # A_dz < 4000.0
          ] + [l_short, l_short, 2*l_short]*(u-ux)

    # If the user has input xyz data, then signs should be ok anyways
    if(ux > 2):
        lb[A_bx] = -l_long

    # It would work to just swap the signs of bx and cx after the optimization
    # But there are fewer assumptions involved in setting correct bounds from the start instead
    if(cx_is_positive):
        tmp = lb[A_bx]
        lb[A_bx] = lb[A_cx]
        lb[A_cx] = tmp
        tmp = ub[A_bx]
        ub[A_bx] = ub[A_cx]
        ub[A_cx] = tmp

    pos_est0 = np.zeros((u-ux,3)) # The positions we need to estimate
    anchors_est = np.array([[0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0],
                            [0.0, 0.0, 0.0]])
    x_guess0 = list(anchorsmatrix2vec(anchors_est)) + list(posmatrix2vec(pos_est0))

    if(method == 'PowellDirectionalSolver'):
        from mystic.termination import ChangeOverGeneration, NormalizedChangeOverGeneration, VTR
        from mystic.solvers import PowellDirectionalSolver
        from mystic.termination import Or, CollapseAt, CollapseAs
        from mystic.termination import ChangeOverGeneration as COG
        target = 1.0
        term = Or((COG(generations=100), CollapseAt(target, generations=100)))
        # Solver 0
        solver0 = PowellDirectionalSolver(number_of_params_pos+params_anch)
        solver0.SetEvaluationLimits(evaluations=3200000, generations=10000)
        solver0.SetTermination(term)
        solver0.SetInitialPoints(x_guess0)
        solver0.SetStrictRanges(lb, ub)
        solver0.Solve(lambda x: costx(x[params_anch:], x[0:params_anch]))
        x_guess0 = solver0.bestSolution
        # PowellDirectional sometimes finds new ways if kickstarted anew
        for i in range(1,20):
            solver0 = PowellDirectionalSolver(number_of_params_pos+params_anch)
            solver0.SetInitialPoints(x_guess0)
            solver0.SetStrictRanges(lb, ub)
            solver0.Solve(lambda x: costx(x[params_anch:], x[0:params_anch]))
            x_guess0 = solver0.bestSolution
        return x_guess0
    elif(method == 'SLSQP'):
        # 'SLSQP' is crazy fast and lands on 0.0000 error
        x_guess0 = scipy.optimize.minimize(lambda x: costx(x[params_anch:], x[0:params_anch]), x_guess0, method=method, bounds=list(zip(lb,ub)),
                options={'disp':True,'ftol':1e-20, 'maxiter':150000})
        return x_guess0.x
    elif(method == 'L-BFGS-B'):
        ## 'L-BFGS-B' Is crazy fast but doesn't quite land at 0.0000 error
        x_guess0 = scipy.optimize.minimize(lambda x: costx(x[params_anch:], x[0:params_anch]), x_guess0, method=method, bounds=list(zip(lb,ub)),
                options={'ftol':1e-12, 'maxiter':150000})
        return x_guess0.x
    else:
        print("Method %s is not supported!" % method)
        sys.exit(1)