コード例 #1
0
ファイル: collapse.py プロジェクト: kashenfelter/mystic
def collapse_as(stepmon, offset=False, tolerance=0.005, \
                         generations=50, mask=None):
    '''return a set of pairs of indices where the parameters exhibit a
    dimensional collapse. Dimensional collapse is defined by:
    max(pairwise(parameters)) <= tolerance over N generations (offset=False),
    ptp(pairwise(parameters)) <= tolerance over N generations (offset=True).

    collapse will be ignored at any pairs of indices specififed in the mask.
    If single indices are provided, ignore all pairs with the given indices.
    '''
    np = _m.numpy
    # reject bad masks
    if mask is None: pass
    elif type(mask) is set:
        for i in mask:
            if hasattr(i, '__len__') and len(i) != 2:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
    else:
        msg = "%s is not a valid mask" % str(mask)
        raise TypeError(msg)
    # is the max position difference less than tolerance across all generations?
    distances = _m._solutions(stepmon, generations)
    #FIXME: HACK: array should be ndim=2... apparently sometimes it's ndim=3
    if distances.ndim == 3 and distances.shape[-1] == 1:
        distances.shape = distances.shape[:-1]
    elif distances.ndim < 3:
        pass
    else:
        msg = 'could not extract pairwise distances from array with shape %s' % distances.shape
        raise ValueError(msg)
    nindices = distances.shape[-1]
    # get distances and pairs of indices
    from mystic.tools import pairwise
    distances, pairs = pairwise(distances, True)
    if offset:  # tracking at a distance
        distances = distances.ptp(axis=0) <= tolerance
    else:  # tracking with the same position
        distances = distances.max(axis=0) <= tolerance
    # get the (index1,index2) pairs where the collapse occurs
    if distances.ndim > 1:
        distances.shape = tuple(i for i in distances.shape if i != 1) or (1, )
    distances = np.array(pairs)[distances]
    # apply mask
    if mask is None: return set(tuple(i) for i in distances)
    mask = selector(mask)
    return set(tuple(i) for i in distances if not mask(i))
コード例 #2
0
ファイル: collapse.py プロジェクト: uqfoundation/mystic
def collapse_as(stepmon, offset=False, tolerance=0.005, \
                         generations=50, mask=None):
    '''return a set of pairs of indices where the parameters exhibit a
    dimensional collapse. Dimensional collapse is defined by:
    max(pairwise(parameters)) <= tolerance over N generations (offset=False),
    ptp(pairwise(parameters)) <= tolerance over N generations (offset=True).

    collapse will be ignored at any pairs of indices specififed in the mask.
    If single indices are provided, ignore all pairs with the given indices.
    '''
    np = _m.numpy
    # reject bad masks
    if mask is None: pass
    elif type(mask) is set:
        for i in mask:
            if hasattr(i, '__len__') and len(i) != 2:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
    else:
        msg = "%s is not a valid mask" % str(mask)
        raise TypeError(msg)
    # is the max position difference less than tolerance across all generations?
    distances = _m._solutions(stepmon, generations)
    #FIXME: HACK: array should be ndim=2... apparently sometimes it's ndim=3
    if distances.ndim == 3 and distances.shape[-1] == 1:
        distances.shape = distances.shape[:-1]
    elif distances.ndim < 3:
        pass
    else:
        msg = 'could not extract pairwise distances from array with shape %s' % distances.shape
        raise ValueError(msg) 
    nindices = distances.shape[-1]
    # get distances and pairs of indices
    from mystic.tools import pairwise
    distances, pairs = pairwise(distances, True)
    if offset: # tracking at a distance
        distances = distances.ptp(axis=0) <= tolerance
    else: # tracking with the same position
        distances = distances.max(axis=0) <= tolerance
    # get the (index1,index2) pairs where the collapse occurs
    if distances.ndim > 1:
        distances.shape = tuple(i for i in distances.shape if i != 1) or (1,)
    distances = np.array(pairs)[distances]
    # apply mask
    if mask is None: return set(tuple(i) for i in distances)
    mask = selector(mask)
    return set(tuple(i) for i in distances if not mask(i))
コード例 #3
0
ファイル: collapse.py プロジェクト: kashenfelter/mystic
def collapse_position(stepmon, tolerance=0.005, generations=50, mask=None):
    '''return a dict of {measure: pairs_of_indices} where the product_measure
    exhibits a dimensional collapse in position. Dimensional collapse in
    position is defined by:

    collapse will be ignored at (measure,pairs) as specified in the mask.
    Format of mask will determine the return value for this function.  Default
    mask format is dict of {measure: pairs_of_indices}, with alternate
    formatting available as a set of tuples of (measure,pair).
    ''' #XXX: not mentioned, 'where' format also available
    np = _m.numpy
    # reject bad masks
    if mask is None: pass
    elif type(mask) is set:
        for i in mask:
            if not hasattr(i, '__len__') or len(i) != 2:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
            if type(i[0]) is not int:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
            if np.array(i[1]).ndim != 1:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
    elif type(mask) is dict:
        for (i, j) in getattr(mask, 'iteritems', mask.items)():
            if type(j) is not set or type(i) is not int:
                msg = "bad entry '%s:%s' in mask" % (str(i), str(j))
                raise ValueError(msg)
            for k in j:  # items in the set
                if not hasattr(k, '__len__') or len(k) != 2:
                    msg = "bad entry '%s:%s' in mask" % (str(i), str(j))
                    raise ValueError(msg)
    elif hasattr(mask, '__len__') and len(mask) == 2:
        if np.array(mask[0]).ndim != 1:
            msg = "%s is not a valid mask" % str(mask)
            raise TypeError(msg)
        if np.array(mask[1]).ndim != 2:
            msg = "%s is not a valid mask" % str(mask)
            raise TypeError(msg)
    elif hasattr(mask, '__len__') and not len(mask):
        mask = type(mask)(((), ()))  #XXX: HACK to get empty where mask
    else:
        msg = "%s is not a valid mask" % str(mask)
        raise TypeError(msg)
    # is the max position difference less than tolerance across all generations?
    distances = _m._positions(stepmon, generations)
    nindices = distances.shape[-1]
    from mystic.tools import pairwise
    distances, pairs = pairwise(distances, True)
    distances = distances.max(axis=0) <= tolerance
    # select off the desired pairs (of indices)
    counts = np.cumsum(distances.sum(axis=-1))
    import warnings
    with warnings.catch_warnings():  #FIXME: python2.5
        warnings.simplefilter('ignore')
        #XXX: throws a FutureWarning
        distances = np.split(
            np.array((pairs, ) * distances.shape[0])[distances], counts)[:-1]
    counts = (set(tuple(i) for i in j) for j in distances)
    # return in terms of pairs, b/c indexing alone doesn't give pairings
    # (keys are measure, and values are (index1,index2) pairs)
    distances = ((i, j) for (i, j) in enumerate(counts) if len(j))
    # identify mask format and build filter
    select, pairs = _position_filter(mask)
    # convert to selected format...
    if pairs:  # return explicit 'pairs' {(measure,indices)}
        import itertools
        mask = set()
        for i, j in distances:
            [
                mask.add(k)
                for k in getattr(itertools, 'izip', zip)(*((i, ) * len(j), j))
            ]
    elif pairs is None:  # return 'where' format [measures,indices]
        import itertools
        # tuple of where,pairs
        measures, mask = (), ()
        for (i, j) in (getattr(itertools, 'izip', zip)(*((j[0], i)
                                                         for i in j[1]))
                       for j in distances):
            measures += i
            mask += j
        mask = (measures, mask) if len(measures) else ()
    else:
        # returns a dict of {measure, indices}
        mask = dict(distances)
    # apply mask
    return select(mask)
コード例 #4
0
ファイル: collapse.py プロジェクト: uqfoundation/mystic
def collapse_position(stepmon, tolerance=0.005, generations=50, mask=None):
    '''return a dict of {measure: pairs_of_indices} where the product_measure
    exhibits a dimensional collapse in position. Dimensional collapse in
    position is defined by:

    collapse will be ignored at (measure,pairs) as specified in the mask.
    Format of mask will determine the return value for this function.  Default
    mask format is dict of {measure: pairs_of_indices}, with alternate
    formatting available as a set of tuples of (measure,pair).
    ''' #XXX: not mentioned, 'where' format also available
    np = _m.numpy
    # reject bad masks
    if mask is None: pass
    elif type(mask) is set:
        for i in mask:
            if not hasattr(i, '__len__') or len(i) != 2:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
            if type(i[0]) is not int:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
            if np.array(i[1]).ndim != 1:
                msg = "bad element '%s' in mask" % str(i)
                raise ValueError(msg)
    elif type(mask) is dict:
        for (i,j) in getattr(mask, 'iteritems', mask.items)():
            if type(j) is not set or type(i) is not int:
                msg = "bad entry '%s:%s' in mask" % (str(i),str(j))
                raise ValueError(msg)
            for k in j: # items in the set
                if not hasattr(k, '__len__') or len(k) != 2:
                    msg = "bad entry '%s:%s' in mask" % (str(i),str(j))
                    raise ValueError(msg)
    elif hasattr(mask, '__len__') and len(mask) == 2:
        if np.array(mask[0]).ndim != 1:
            msg = "%s is not a valid mask" % str(mask)
            raise TypeError(msg)
        if np.array(mask[1]).ndim != 2:
            msg = "%s is not a valid mask" % str(mask)
            raise TypeError(msg)
    elif hasattr(mask, '__len__') and not len(mask):
        mask = type(mask)(((),())) #XXX: HACK to get empty where mask
    else:
        msg = "%s is not a valid mask" % str(mask)
        raise TypeError(msg)
    # is the max position difference less than tolerance across all generations?
    distances = _m._positions(stepmon, generations)
    nindices = distances.shape[-1]
    from mystic.tools import pairwise
    distances, pairs = pairwise(distances, True)
    distances = distances.max(axis=0) <= tolerance
    # select off the desired pairs (of indices)
    counts = np.cumsum(distances.sum(axis=-1))
    import warnings
    with warnings.catch_warnings():  #FIXME: python2.5
        warnings.simplefilter('ignore')
        #XXX: throws a FutureWarning
        distances = np.split(np.array((pairs,)*distances.shape[0])[distances], counts)[:-1]
    counts = (set(tuple(i) for i in j) for j in distances)
    # return in terms of pairs, b/c indexing alone doesn't give pairings
    # (keys are measure, and values are (index1,index2) pairs)
    distances = ((i,j) for (i,j) in enumerate(counts) if len(j))
    # identify mask format and build filter
    select, pairs = _position_filter(mask)
    # convert to selected format...
    if pairs: # return explicit 'pairs' {(measure,indices)}
        import itertools
        mask = set()
        for i,j in distances:
            [mask.add(k) for k in getattr(itertools, 'izip', zip)(*((i,)*len(j), j))]
    elif pairs is None: # return 'where' format [measures,indices]
        import itertools
        # tuple of where,pairs
        measures,mask = (),()
        for (i,j) in (getattr(itertools, 'izip', zip)(*((j[0],i) for i in j[1])) for j in distances):
            measures += i
            mask += j
        mask = (measures,mask) if len(measures) else ()
    else:
        # returns a dict of {measure, indices}
        mask = dict(distances)
    # apply mask
    return select(mask)