def test_fit_data_with_user_training_set(): tdir = setup_training_set() _, name = tempfile.mkstemp(suffix=".cfg", prefix="test_nanite_cli_rate_") name = pathlib.Path(name) pf = profile.Profile(path=name) pf["rating training set"] = tdir pf["fit param R value"] = 37.28e-6 / 2 pout = tempfile.mkdtemp(prefix="test_nanite_cli_rate_ts") pout = pathlib.Path(pout) rating.fit_perform(path=jpkfile2, path_results=pout, profile_path=name) stats = np.loadtxt(pout / "statistics.tsv", skiprows=1, usecols=(1, 2, 3)) assert np.all(stats[:, 0] == [109, 129, 416]) assert np.all((3.5 < stats[:, 2]) * (stats[:, 2] < 5))
def test_fit_data_with_zef18(): _, name = tempfile.mkstemp(suffix=".cfg", prefix="test_nanite_cli_rate_") name = pathlib.Path(name) pf = profile.Profile(path=name) pf["rating training set"] = "zef18" pf["weight_cp"] = 2e-6 pf["fit param R value"] = 137.28e-6 / 2 pout = tempfile.mkdtemp(prefix="test_nanite_cli_rate_ts") pout = pathlib.Path(pout) rating.fit_perform(path=jpkfile2, path_results=pout, profile_path=name) stats = np.loadtxt(pout / "statistics.tsv", skiprows=1, usecols=(1, 2, 3)) assert np.all(stats[:, 0] == [109, 129, 416]) assert stats[0, 2] == 9.5 assert stats[1, 2] == 2.4 assert stats[2, 2] == 4.9