def main(args): load_config(cfg, args.config) local_rank = -1 torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True cfg.defrost() timestr = datetime.datetime.now().__format__("%Y%m%d%H%M%S") cfg.save_dir = os.path.join(cfg.save_dir, timestr) mkdir(local_rank, cfg.save_dir) logger = NanoDetLightningLogger(cfg.save_dir) assert args.task in ["val", "test"] cfg.update({"test_mode": args.task}) logger.info("Setting up data...") val_dataset = build_dataset(cfg.data.val, args.task) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=cfg.device.batchsize_per_gpu, shuffle=False, num_workers=cfg.device.workers_per_gpu, pin_memory=True, collate_fn=naive_collate, drop_last=False, ) evaluator = build_evaluator(cfg.evaluator, val_dataset) logger.info("Creating model...") task = TrainingTask(cfg, evaluator) ckpt = torch.load(args.model) if "pytorch-lightning_version" not in ckpt: warnings.warn( "Warning! Old .pth checkpoint is deprecated. " "Convert the checkpoint with tools/convert_old_checkpoint.py ") ckpt = convert_old_model(ckpt) task.load_state_dict(ckpt["state_dict"]) if cfg.device.gpu_ids == -1: logger.info("Using CPU training") accelerator, devices = "cpu", None else: accelerator, devices = "gpu", cfg.device.gpu_ids trainer = pl.Trainer( default_root_dir=cfg.save_dir, accelerator=accelerator, devices=devices, log_every_n_steps=cfg.log.interval, num_sanity_val_steps=0, logger=logger, ) logger.info("Starting testing...") trainer.test(task, val_dataloader)
def main(args): warnings.warn( 'Warning! Old testing code is deprecated and will be deleted ' 'in next version. Please use tools/test.py') load_config(cfg, args.config) local_rank = -1 torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True cfg.defrost() timestr = datetime.datetime.now().__format__('%Y%m%d%H%M%S') cfg.save_dir = os.path.join(cfg.save_dir, timestr) cfg.freeze() mkdir(local_rank, cfg.save_dir) logger = Logger(local_rank, cfg.save_dir) logger.log('Creating model...') model = build_model(cfg.model) logger.log('Setting up data...') val_dataset = build_dataset(cfg.data.val, args.task) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=cfg.device.batchsize_per_gpu, shuffle=False, num_workers=cfg.device.workers_per_gpu, pin_memory=True, collate_fn=collate_function, drop_last=True) trainer = build_trainer(local_rank, cfg, model, logger) cfg.schedule.update({'load_model': args.model}) trainer.load_model(cfg) evaluator = build_evaluator(cfg, val_dataset) logger.log('Starting testing...') with torch.no_grad(): results, val_loss_dict = trainer.run_epoch(0, val_dataloader, mode=args.task) if args.task == 'test': res_json = evaluator.results2json(results) json_path = os.path.join(cfg.save_dir, 'results{}.json'.format(timestr)) json.dump(res_json, open(json_path, 'w')) elif args.task == 'val': eval_results = evaluator.evaluate(results, cfg.save_dir, rank=local_rank) if args.save_result: txt_path = os.path.join(cfg.save_dir, "eval_results{}.txt".format(timestr)) with open(txt_path, "a") as f: for k, v in eval_results.items(): f.write("{}: {}\n".format(k, v))
def main(args): load_config(cfg, args.config) local_rank = -1 torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True cfg.defrost() timestr = datetime.datetime.now().__format__('%Y%m%d%H%M%S') cfg.save_dir = os.path.join(cfg.save_dir, timestr) mkdir(local_rank, cfg.save_dir) logger = Logger(local_rank, cfg.save_dir) assert args.task in ['val', 'test'] cfg.update({'test_mode': args.task}) logger.log('Setting up data...') val_dataset = build_dataset(cfg.data.val, args.task) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=cfg.device.batchsize_per_gpu, shuffle=False, num_workers=cfg.device.workers_per_gpu, pin_memory=True, collate_fn=collate_function, drop_last=True) evaluator = build_evaluator(cfg, val_dataset) logger.log('Creating model...') task = TrainingTask(cfg, evaluator) ckpt = torch.load(args.model) if 'pytorch-lightning_version' not in ckpt: warnings.warn( 'Warning! Old .pth checkpoint is deprecated. ' 'Convert the checkpoint with tools/convert_old_checkpoint.py ') ckpt = convert_old_model(ckpt) task.load_state_dict(ckpt['state_dict']) trainer = pl.Trainer( default_root_dir=cfg.save_dir, gpus=cfg.device.gpu_ids, accelerator='ddp', log_every_n_steps=cfg.log.interval, num_sanity_val_steps=0, ) logger.log('Starting testing...') trainer.test(task, val_dataloader)