コード例 #1
0
ファイル: _visualize.py プロジェクト: sofroniewn/waver
def run_and_visualize(**kawrgs):
    """Visualize a simulation.

    Parameters
    ----------
    kawrgs :
        run_multiple_sources kwargs.
    """
    wave, speed = run_multiple_sources(**kawrgs)

    clim = np.percentile(wave, 99)
    wave_cmap = Colormap(
        [[0.55, 0, .32, 1], [0, 0, 0, 0], [0.15, 0.4, 0.1, 1]], name='PBlG')
    wave_dict = {
        'colormap': wave_cmap,
        'contrast_limits': [-clim, clim],
        'name': 'wave',
        'metadata': kawrgs,
        'interpolation': 'bilinear'
    }

    speed_cmap = Colormap([[0, 0, 0, 0], [0.7, 0.5, 0, 1]], name='Orange')
    speed_dict = {
        'colormap': speed_cmap,
        'opacity': 0.5,
        'name': 'speed',
        'metadata': kawrgs,
        'interpolation': 'bilinear'
    }

    viewer = napari.Viewer()
    viewer.add_image(np.atleast_2d(np.squeeze(wave)), **wave_dict)
    viewer.add_image(np.atleast_2d(speed[0, 0]), **speed_dict)

    napari.run()
コード例 #2
0
ファイル: test_json_hooks.py プロジェクト: 4DNucleome/PartSeg
def test_colormap_dump(tmp_path):
    cmap_list = [Colormap([(0, 0, 0), (1, 1, 1)]), Colormap([(0, 0, 0), (1, 1, 1)], controls=[0, 1])]
    with open(tmp_path / "test.json", "w") as f_p:
        json.dump(cmap_list, f_p, cls=ProfileEncoder)

    with open(tmp_path / "test.json") as f_p:
        cmap_list2 = json.load(f_p, object_hook=profile_hook)

    assert np.array_equal(cmap_list[0].colors, cmap_list2[0].colors)
    assert np.array_equal(cmap_list[0].controls, cmap_list2[0].controls)
    assert np.array_equal(cmap_list[1].colors, cmap_list2[1].colors)
    assert np.array_equal(cmap_list[1].controls, cmap_list2[1].controls)

    cmap_list = [
        Colormap([(0, 0, 0), (1, 1, 1)]),
        Colormap([(0, 0, 0), (0, 0, 0), (1, 1, 1), (1, 1, 1)], controls=[0, 0.1, 0.8, 1]),
    ]
    with open(tmp_path / "test2.json", "w") as f_p:
        json.dump(cmap_list, f_p, cls=ProfileEncoder)

    with open(tmp_path / "test2.json") as f_p:
        cmap_list2 = json.load(f_p, object_hook=profile_hook)

    assert np.array_equal(cmap_list[0].colors, cmap_list2[0].colors)
    assert np.array_equal(cmap_list[0].controls, cmap_list2[0].controls)
    assert np.array_equal(cmap_list[1].colors, cmap_list2[1].colors)
    assert np.array_equal(cmap_list[1].controls, cmap_list2[1].controls)
    assert cmap_list2[1].controls[0] == 0
    assert cmap_list2[1].controls[-1] == 1
    assert np.array_equal(cmap_list[1].colors[0], cmap_list2[1].colors[0])
    assert np.array_equal(cmap_list[1].colors[-1], cmap_list2[1].colors[-1])
コード例 #3
0
ファイル: test_image.py プロジェクト: jojoelfe/napari
def test_colormaps():
    """Test setting test_colormaps."""
    np.random.seed(0)
    data = np.random.random((10, 15))
    layer = Image(data)
    assert layer.colormap.name == 'gray'
    assert isinstance(layer.colormap, Colormap)

    layer.colormap = 'magma'
    assert layer.colormap.name == 'magma'
    assert isinstance(layer.colormap, Colormap)

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.3, 0.7, 0.2, 1.0]])
    layer.colormap = 'custom', cmap
    assert layer.colormap.name == 'custom'
    assert layer.colormap == cmap

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.7, 0.2, 0.6, 1.0]])
    layer.colormap = {'new': cmap}
    assert layer.colormap.name == 'new'
    assert layer.colormap == cmap

    layer = Image(data, colormap='magma')
    assert layer.colormap.name == 'magma'
    assert isinstance(layer.colormap, Colormap)

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.3, 0.7, 0.2, 1.0]])
    layer = Image(data, colormap=('custom', cmap))
    assert layer.colormap.name == 'custom'
    assert layer.colormap == cmap

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.7, 0.2, 0.6, 1.0]])
    layer = Image(data, colormap={'new': cmap})
    assert layer.colormap.name == 'new'
    assert layer.colormap == cmap
コード例 #4
0
 def __init__(self):
     super().__init__()
     self.color_list: List[Color] = []
     self.position_list: List[float] = []
     self.move_ind = None
     self.image = convert_colormap_to_image(Colormap([(0, 0, 0)]))
     self.setMinimumHeight(60)
コード例 #5
0
    def colormap(self) -> Colormap:
        """colormap getter"""
        if len(self.color_list) == 0:
            return Colormap("black")

        color_list = self.color_list[:]
        position_list = self.position_list[:]
        if position_list[0] != 0:
            position_list.insert(0, 0)
            color_list.insert(0, color_list[0])

        if position_list[-1] != 1:
            position_list.append(1)
            color_list.append(color_list[-1])

        return Colormap(colors=color_list, controls=position_list)
コード例 #6
0
    def update_colormap(self, name, channel_id):
        fixed_range = self._settings.get_from_profile(
            f"{name}.lock_{channel_id}", False)
        gamma = self._settings.get_from_profile(
            f"{name}.gamma_value_{channel_id}", 1)
        if fixed_range:
            self.range = self._settings.get_from_profile(
                f"{name}.range_{channel_id}")
        else:
            self.range = self._settings.border_val[channel_id]
        cmap = self._settings.colormap_dict[
            self._settings.get_channel_colormap_name(name, channel_id)][0]

        round_factor = self.round_base(self.range[1])
        self.round_range = (
            int(round(self.range[0] / round_factor) * round_factor),
            int(round(self.range[1] / round_factor) * round_factor),
        )
        if self.round_range[0] < self.range[0]:
            self.round_range = self.round_range[
                0] + round_factor, self.round_range[1]
        if self.round_range[1] > self.range[1]:
            self.round_range = self.round_range[
                0], self.round_range[1] - round_factor
        # print(self.range, self.round_range)
        data = np.linspace(0, 1, 512)
        interpolated = cmap.map(data)
        data = data**gamma
        colormap = Colormap(interpolated, controls=data)
        self.image = NumpyQImage(
            np.array(
                make_colorbar(colormap, size=(512, 1),
                              horizontal=False)[::-1]))
        self.repaint()
コード例 #7
0
 def clear(self):
     """
     Remove color markers. Reset to initial state.
     """
     self.color_list = []
     self.position_list = []
     self.image = convert_colormap_to_image(Colormap([(0, 0, 0), (1, 1, 1)]))
     self.repaint()
コード例 #8
0
ファイル: _loader.py プロジェクト: sofroniewn/waver
def load_simulation_dataset(path):
    """Load a simulation dataset.

    Parameters
    ----------
    path : str
        Path to simulation data to load.

    Returns
    -------
    dataset : zarr.hierarchy.Group
        Loaded simulation dataset.
    """

    # Load dataset
    path = Path(path)
    dataset = zarr.open(path.as_posix(), mode='r')

    metadata = dataset.attrs.asdict()

    # If dataset is a full dataset return it
    if dataset.attrs['waver'] and dataset.attrs['dataset']:
        # Return simulation wave data
        clim = max(dataset['wave'][0].max(), abs(
            dataset['wave'][0].min())) / 3**dataset['wave'][0].ndim
        wave_cmap = Colormap(
            [[0.55, 0, .32, 1], [0, 0, 0, 0], [0.15, 0.4, 0.1, 1]],
            name='PBlG')
        wave_dict = {
            'colormap': wave_cmap,
            'contrast_limits': [-clim, clim],
            'name': 'wave',
            'metadata': metadata
        }
        speed_cmap = Colormap([[0, 0, 0, 0], [0.7, 0.5, 0, 1]], name='Orange')
        speed_dict = {
            'colormap': speed_cmap,
            'visible': False,
            'contrast_limits': (metadata['min_speed'], metadata['max_speed']),
            'name': 'speed',
            'metadata': metadata
        }
        return [(dataset['wave'], wave_dict, 'image'),
                (dataset['speed'], speed_dict, 'image')]
    else:
        raise ValueError(f'Dataset at {path} not valid waver simulation')
コード例 #9
0
def test_colormaps():
    """Test setting test_colormaps."""
    shapes = [(40, 20), (20, 10), (10, 5)]
    np.random.seed(0)
    data = [np.random.random(s) for s in shapes]
    layer = Image(data, multiscale=True)
    assert layer.colormap.name == 'gray'
    assert isinstance(layer.colormap, Colormap)

    layer.colormap = 'magma'
    assert layer.colormap.name == 'magma'
    assert isinstance(layer.colormap, Colormap)

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.3, 0.7, 0.2, 1.0]])
    layer.colormap = 'custom', cmap
    assert layer.colormap.name == 'custom'
    assert layer.colormap == cmap

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.7, 0.2, 0.6, 1.0]])
    layer.colormap = {'new': cmap}
    assert layer.colormap.name == 'new'
    assert layer.colormap == cmap

    layer = Image(data, multiscale=True, colormap='magma')
    assert layer.colormap.name == 'magma'
    assert isinstance(layer.colormap, Colormap)

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.3, 0.7, 0.2, 1.0]])
    layer = Image(data, multiscale=True, colormap=('custom', cmap))
    assert layer.colormap.name == 'custom'
    assert layer.colormap == cmap

    cmap = Colormap([[0.0, 0.0, 0.0, 0.0], [0.7, 0.2, 0.6, 1.0]])
    layer = Image(data, multiscale=True, colormap={'new': cmap})
    assert layer.colormap.name == 'new'
    assert layer.colormap == cmap
コード例 #10
0
 def save(self):
     if self.show_colormap.colormap:
         rand_name = custom_name_generate(self.prohibited_names, self.settings.colormap_dict)
         self.prohibited_names.add(rand_name)
         colors = list(self.show_colormap.colormap.colors)
         positions = list(self.show_colormap.colormap.controls)
         if positions[0] != 0:
             positions.insert(0, 0)
             colors.insert(0, colors[0])
         if positions[-1] != 1:
             positions.append(1)
             colors.append(colors[-1])
         self.settings.colormap_dict[rand_name] = Colormap(colors=np.array(colors), controls=np.array(positions))
         self.settings.chosen_colormap_change(rand_name, True)
         self.colormap_selected.emit(self.settings.colormap_dict[rand_name][0])
コード例 #11
0
 def create_colormap(self) -> Colormap:
     return Colormap(name='IMC',
                     colors=[[0., 0., 0., self.color[-1]],
                             list(self._color)],
                     interpolation='linear')
コード例 #12
0
def simulation(
    ndim: int = 2,
    length: float = 12.8,
    spacing: float = 100,
    min_speed: float = 343,
    max_speed: float = 686,
    time_step: float = 50,
    duration: float = 60,
    frequency: float = 500,
    method: str = 'flat',
    custom: 'napari.layers.Layer' = None,
    spatial_downsample: int = 1,
    temporal_downsample: int = 1,
    boundary: int = 0,
) -> 'napari.types.LayerDataTuple':
    """Run a single simulation.
    """
    size = ndim * (length / 1e3, )  # length always same in all dimensions
    spacing = spacing / 1e6
    time_ste = time_step / 1e9
    period = 1 / frequency / 1e3
    location = (s / 2 for s in size)
    duration = duration / 1e6

    # Add randomly sampled speed array
    if method == 'custom':
        raw_speed = custom.data
        if hasattr(custom, 'num_colors'):
            raw_speed = raw_speed / raw_speed.max()
        else:
            import numpy as np

            raw_speed = np.clip(raw_speed, custom.contrast_limits[0],
                                custom.contrast_limits[1])
            raw_speed = (raw_speed - custom.contrast_limits[0]) / (
                custom.contrast_limits[1] - custom.contrast_limits[0])
        speed = raw_speed * (max_speed - min_speed) + min_speed
    else:
        speed = method

    detected_wave, detected_speed = run_single_source(
        size=size,
        spacing=spacing,
        location=location,
        duration=duration,
        max_speed=max_speed,
        min_speed=min_speed,
        speed=speed,
        period=period,
        spatial_downsample=spatial_downsample,
        temporal_downsample=temporal_downsample,
        boundary=boundary)

    # Return simulation wave data
    clim = max(detected_wave.max(), abs(detected_wave.min())) / 3**ndim
    wave_cmap = Colormap(
        [[0.55, 0, .32, 1], [0, 0, 0, 0], [0.15, 0.4, 0.1, 1]], name='PBlG')
    wave_dict = {
        'colormap': wave_cmap,
        'contrast_limits': [-clim, clim],
        'name': 'wave'
    }
    speed_cmap = Colormap([[0, 0, 0, 0], [0.7, 0.5, 0, 1]], name='Orange')
    speed_dict = {
        'colormap': speed_cmap,
        'opacity': 0.5,
        'contrast_limits': (min_speed, max_speed),
        'name': 'speed'
    }
    return [(detected_wave, wave_dict, 'Image'),
            (detected_speed, speed_dict, 'Image')]