コード例 #1
0
def create_structure(input_shape=[(2, ), (2, ), (2, )],
                     output_shape=(1, ),
                     num_cell=8,
                     *args,
                     **kwargs):

    network = KerasStructure(input_shape,
                             output_shape)  #, output_op=AddByPadding)
    input_nodes = network.input_nodes

    # CELL 1
    cell1 = create_cell_1(input_nodes)
    network.add_cell(cell1)

    # CELL Middle
    inputs_skipco = [
        input_nodes, input_nodes[0], input_nodes[1], input_nodes[2],
        cell1.output
    ]
    pred_cell = cell1
    n = num_cell
    for i in range(n):
        cell_i = Cell(input_nodes + [cell1.output])

        block1 = create_mlp_block(cell_i, pred_cell.output)
        cell_i.add_block(block1)

        cnode = VariableNode(name='SkipCo')
        nullNode = ConstantNode(op=Tensor([]), name='None')
        cnode.add_op(Connect(cell_i.graph, nullNode, cnode))  # SAME

        for inpt in inputs_skipco:
            cnode.add_op(Connect(cell_i.graph, inpt, cnode))

        block2 = Block()
        block2.add_node(cnode)
        cell_i.add_block(block2)
        # set_cell_output_add(cell2)
        cell_i.set_outputs()

        network.add_cell(cell_i)

        # prep. for next iter
        inputs_skipco.append(cell_i.output)
        pred_cell = cell_i

    # CELL LAST
    cell_last = Cell([pred_cell.output])
    block1 = create_mlp_block(cell_last, pred_cell.output)
    cell_last.add_block(block1)
    # set_cell_output_add(cell3)
    cell_last.set_outputs()
    network.add_cell(cell_last)

    return network
コード例 #2
0
    def create_conv_block(input_nodes):
        # first node of block
        n1 = VariableNode('N1')
        for inpt in input_nodes:
            n1.add_op(Connect(cell.graph, inpt, n1))

        def create_conv_node(name):
            n = VariableNode(name)
            n.add_op(Identity())
            n.add_op(Conv1D(filter_size=5, num_filters=2))
            n.add_op(Conv1D(filter_size=5, num_filters=3))
            n.add_op(MaxPooling1D(pool_size=3, padding='same'))
            n.add_op(MaxPooling1D(pool_size=5, padding='same'))
            return n
        # second node of block
        n2 = create_conv_node('N2')

        n3 = create_conv_node('N3')

        block = Block()
        block.add_node(n1)
        block.add_node(n2)
        block.add_node(n3)

        block.add_edge(n1, n2)
        block.add_edge(n2, n3)
        return block
コード例 #3
0
def create_cell_conv(input_nodes):
    """Create a cell with convolution.

    Args:
        input_nodes (list(Node)): a list of input_nodes for this cell.

    Returns:
        Cell: the corresponding cell.
    """
    cell = Cell(input_nodes)

    n1 = ConstantNode(op=Conv1D(filter_size=20, num_filters=128), name='N1')
    cell.graph.add_edge(input_nodes[0], n1) # fixed input connection

    n2 = ConstantNode(op=Activation(activation='relu'), name='N2')

    n3 = ConstantNode(op=MaxPooling1D(pool_size=1, padding='same'), name='N3')

    n4 = ConstantNode(op=Conv1D(filter_size=10, num_filters=128),name='N4')

    n5 = ConstantNode(op=Activation(activation='relu'), name='N5')

    n6 = ConstantNode(op=MaxPooling1D(pool_size=10, padding='same'), name='N6')

    n7 = ConstantNode(op=Flatten(), name='N7')

    n8 = ConstantNode(op=Dense(units=200), name='N8')

    n9 = ConstantNode(op=Activation(activation='relu'), name='N9')

    n10 = ConstantNode(op=Dropout(rate=0.1), name='N10')

    n11 = ConstantNode(op=Dense(units=20), name='N11')

    n12 = ConstantNode(op=Activation(activation='relu'), name='N12')

    n13 = ConstantNode(op=Dropout(rate=0.1), name='N13')

    block = Block()
    block.add_node(n1)
    block.add_node(n2)
    block.add_node(n3)
    block.add_node(n4)
    block.add_node(n5)
    block.add_node(n6)
    block.add_node(n7)
    block.add_node(n8)
    block.add_node(n9)
    block.add_node(n10)
    block.add_node(n11)
    block.add_node(n12)
    block.add_node(n13)
    block.add_edge(n1, n2)
    block.add_edge(n2, n3)
    block.add_edge(n3, n4)
    block.add_edge(n4, n5)
    block.add_edge(n5, n6)
    block.add_edge(n6, n7)
    block.add_edge(n7, n8)
    block.add_edge(n8, n9)
    block.add_edge(n9, n10)
    block.add_edge(n10, n11)
    block.add_edge(n11, n12)
    block.add_edge(n12, n13)

    cell.add_block(block)

    cell.set_outputs()
    return cell